Writer, Traveler, Social worker, Psychologist, Amateur Photographer, Amateur Astronomer, Science Lover, Wikipedian. Government Employee by Profession. Lives in Thiruvananthapuram, India.
From Kollam District of Kerala, now residing at Thiruvananthapuram.
Working at Harbour Engineering Department.
Member of Kerala Sastra sahithya Parishad, Free Software Movement of India, DAKF, Associate Editor of LUCA Science Portal
വിനോദസഞ്ചാരത്തിന്റെ ഭാഗമായി കറങ്ങിനടക്കുന്നതിനിടയിലാണ് 2018ഏപ്രിൽ മാസത്തിലെ ഒരു രാത്രിയിൽ നേപ്പാളിലെ പ്രമുഖ വിനോദസഞ്ചാര കേന്ദ്രമായ പൊഖറയിൽ എത്തുന്നത്. രാത്രി അവിടെ നിന്നു നോക്കുമ്പോൾ, അല്പം അകലെയായി ഭൂമിയിൽ നിന്നും ആകാശത്തേക്ക് നീളുന്ന വൈദ്യുത വിളക്കുകൾ കണ്ടു. വിളക്കു തെളിക്കുന്ന വഴിയിലൂടെ ഉയരത്തിലേക്കു നോമ്പോൾ, നക്ഷത്രങ്ങളാണോ വിളക്കുകളാണോ എന്ന് തിരിച്ചറിയാൻ കഴിയാത്തവിധമുള്ള ദീപക്കാഴ്ചയാണ് ആകാശത്ത്. അതൊരു വേനൽ രാത്രിയായിരുന്നു, തെളിഞ്ഞ ആകാശവും. ഏതോ മായികലോകത്ത് എത്തിയ പ്രതീതിയാണു തോന്നിയത്. നഗരത്തോടു ചേര്ന്നുള്ള സാരങ്കോട്ട് എന്ന പര്വ്വതവും അതിനുമുകളിലേക്കുള്ള വഴിയിൽ തെളിച്ചിട്ടുള്ള ദീപങ്ങളുമാണതെന്നു മനസ്സിലായി. നേരം വെളുത്താൽ എന്തായാലും ആ പര്വ്വതത്തിനു മുകളെലെത്തണമെന്ന് അപ്പോഴേ വിചാരിച്ചുരുന്നു. ഹിമാലയ പർവ്വതനിരയുടെ ഭാഗമായ ഒരു പർവ്വതമാണ് സാരങ്കോട്ട്.
അടുത്ത ദിവസം അല്പം വൈകിയാണ് ഉണർന്നത്. ഹോട്ടലിന്റെ ബാൽക്കണിയിൽ നിന്നും മലമുകളിലേക്കു നോക്കിയ എന്നെ അത്ഭുതപ്പെടുത്തുന്ന മറ്റൊരു കാഴ്ചയാണ് അപ്പോഴുണ്ടായിരുന്നത്. നൂറുകണക്കിന് വർണ്ണച്ചിറകുകളും അതിൽ തൂങ്ങി മനുഷ്യരും ആകാശത്തുനിന്നും ഭൂമിയിലേക്ക് പറന്നിറങ്ങുന്നു, പര്വ്വതമുകളിൽ നിന്നും പാരച്യൂട്ടിൽ പറന്ന് താഴെയുള്ള ഫേവ തടാകത്തിന്റെ കരയിലേക്കിറങ്ങുന്ന പാരാഗ്ലൈഡേഴ്സായിരുന്നു അതെല്ലാം. വിവിധ വർണ്ണങ്ങളിലുള്ള ഡ്രാഗണുകളുടെ പുറത്തു പറന്നുനടക്കുന്ന അവതാര് സിനിമയിലെ ‘നാവി’കളെയാണ് അതുകണ്ടപ്പോൾ ഓർമ്മവന്നത്. എന്തായാലും പാരച്യൂട്ടിൽ ഒരു പറക്കൽ തരപ്പെടുത്തണമെന്ന് അപ്പോൾ തന്നെ തീർച്ചപ്പെടുത്തി.
സാരങ്കോട്ടിനു മുകളിൽ നിന്നുള്ള കാഴ്ച – താഴെ കാണുന്നത് പോഖറ പട്ടണമാണ്.
നേപ്പാളിന്റെ പ്രഥാന വരുമാനമാർഗ്ഗമാണ് വിനോദസഞ്ചാരം. വിനോദസഞ്ചാരികൾക്ക് ആവശ്യമായ സൗകര്യങ്ങള് ചെയ്തുകൊടുക്കുന്ന ധാരാളം കേന്ദ്രങ്ങൾ പൊഖറ നഗരത്തിലുണ്ട്. ചില തെരുവുകൾ ഇത്തരത്തിൽ വിനോദസഞ്ചാരികൾക്കാവശ്യമായ സൗകര്യങ്ങള് ചെയ്തുകൊടുക്കുന്ന കടകൾക്കു മാത്രമായുള്ളതാണ്. അത്തരം ചില കടകളിലെത്തി വിവരങ്ങളൊക്കെ മനസ്സിലാക്കി. ഓരോ സ്ഥലത്തും വിവിധ നിരക്കുകളാണ് പാരാഗ്ലൈഡിംഗിന് വാങ്ങുന്നത്. 5000-മുതൽ 8000 വരെയാണ് ചോദിക്കുന്നത്. നഗരത്തിൽ നിന്നും ജീപ്പിൽ കയറ്റി പര്വ്വതമുകളിൽ എത്തിക്കും. അരമണിക്കൂറിലധികം എടുക്കും മുകളിലെത്താൻ. നഗരത്തോടു ചേർന്നുള്ള മനോഹരവും വിശാലവുായ ഫേവ തടാകത്തിന്റെ കരയിലുള്ള മൈതാനത്താണ് പാരച്യൂട്ടുകൾ വന്നിറങ്ങുക. അവിടെ നിന്നും ജീപ്പിൽ കയറ്റി നമ്മളെ വീണ്ടും നഗരത്തിലെത്തിക്കും. ഓരോ പാരച്യൂട്ടിനൊപ്പവും, അതു പറത്താനായി ഒരു പൈലറ്റും ഉണ്ടാകും. നമ്മൾ വെറുതെ ഇരുന്നു കൊടുത്താൽ മതി, പറത്തലും നിലത്തിറക്കലുമൊക്കെ പൈലറ്റ് തന്നെ ചെയ്തുകൊള്ളും. എന്തായാലും അന്ന് വിവരങ്ങളൊക്കെ ചോദിച്ചു മനസ്സിലാക്കി ഞാൻ തിരികെ പോന്നു. അടുത്ത ദിവസം പറക്കാമെന്നു കണക്കു കൂട്ടി, മറ്റ് പരിപാടികളിൽ ഏർപ്പെട്ടു.
അസംഖ്യം വർണ്ണപ്പട്ടങ്ങൾ പോലെ സാരങ്കോട്ടിനുമുകളിൽ പറന്നു നടക്കുന്ന പാരച്യൂട്ടുകൾ
അടുത്ത ദിവസം രാവിലെ എട്ടുമണിയോടെ വീണ്ടും പലപല കടകളിൽ കയറിയിറങ്ങി. അല്പം റേറ്റ് കുറവുള്ള ഒരു കട കണ്ടെത്തുകയായിരുന്നു ലക്ഷ്യം. ഒരു കടയിൽ ജീപ്പൊക്കെ തയ്യാറായി നില്ക്കുന്നു. കുറച്ചു പേര് അതിനകത്തുണ്ട്. ഞാൻ കാര്യങ്ങളൊക്കെ അന്വേഷിച്ചു. അഞ്ചുപേരെയാണ് ഒരു തവണ മുകളിൽ എത്തിക്കുന്നത്. ഇതുവരെ നാല് സഞ്ചാരികളെ ആയിട്ടുള്ളു. അഞ്ച് പൈലറ്റുമാരും അഞ്ചാൾക്കുള്ള പാരച്യൂട്ടും തയ്യാറാണ്. ഒരാളെ കൂടി കിട്ടിയാൽ ഉടൻ പുറപ്പെടാം. അല്പം നിരക്കു കുറയ്ക്കുകയാണെങ്കിൽ ഞാൻ തയ്യാറാണ് എന്നു പറഞ്ഞു. ഇത്തരം വിലപേശലുകൾ അവിടെ പതിവാണ്. ഒടുവിൽ 4500 രൂപയ്ക്ക് പാരാഗ്ലൈഡിംഗ് തരപ്പെട്ടു.
അങ്ങനെ ഞങ്ങളുടെ ജീപ്പ് സാരങ്കോട്ടിന്റെ മുകളിലേക്ക് യാത്രയായി. കുത്തനെയുള്ള കയറ്റമാണ്. ചിലയിടത്തൊക്കെ, ജീപ്പിന് കയറാനായി പൈലറ്റുമാർ ഇറങ്ങിക്കൊടുത്ത് ജീപ്പ് നിരങ്ങി നിരങ്ങി കയറേണ്ടി വന്നു. ഉയരത്തിലേക്കു പോകും തോറും താഴെ നഗരവും അതിനടുത്തായുള്ള തടാകവും കാണാറായി. തീപ്പെട്ടിക്കൂടുകൾ അടുക്കിയപോലെ കെട്ടിടനിരകൾ.
ജീപ്പിലുള്ളവരെയൊക്കെ പരിചയപ്പെട്ടു. അക്കൂട്ടത്തിൽ പന്ത്രണ്ടാം ക്ലാസ്സ് പരീക്ഷ കഴിഞ്ഞ് വെക്കേഷൻ ആസ്വദിക്കാൻ കാഠ്മണ്ടുവിൽ നിന്നും എത്തിയ ഒരു പെൺകുട്ടിയും ഉണ്ടായിരുന്നു. പഠനം കഴിഞ്ഞാൽ രണ്ടുമാസം ചുറ്റിക്കറങ്ങാൻ അനുവദിക്കണമെന്ന് വീട്ടുകാരിൽ നിന്നും സമ്മതം വാങ്ങി കറങ്ങാനിറങ്ങിയിരിക്കുകയാണ് അവൾ. ആദ്യമായി പറക്കാൻ പോകുന്നതിന്റെ ഭയം അവൾ ഒളിച്ചുവച്ചില്ല. വളരെ കഷ്ടപ്പെട്ടാണ് വീട്ടുകാരിൽ നിന്നും പറക്കാനുള്ള സമ്മതം വാങ്ങിയിരിക്കുന്നത്. കേരളത്തെക്കുറിച്ചൊക്കെ അവൾക്ക് അറിയാം. എരിവുള്ള ഭക്ഷണം കഴിക്കുന്നവർ എന്നാണ് അവൾ മലയാളികളെ വിശേഷിപ്പിച്ചത്.
പറക്കലിനിടയിലുള്ള കാഴ്ച – നേപ്പാൾ ഗ്രാമങ്ങളും ഫേവ തടാകവും
അങ്ങനെ ഞങ്ങൾ മുകളിലെത്തി. മുകളിൽ വിവിധ ഇടങ്ങളിലായി ഗ്ലൈഡേഴ്സിന്റെ പറക്കലുകൾ നടക്കുന്നുണ്ടായിരുന്നു. അല്പം നിരപ്പായതും ഒരു വശം കുത്തനെ താഴ്ചയുള്ളതുമായ ഒരു സ്ഥലത്താണ് ഞങ്ങൾ എത്തിയത്. എന്റെ പൈലറ്റ് താംബ എന്നു പേരായ ഒരു ആസ്ത്രേലിയക്കാരനായിരുന്നു. ഗ്ലൈഡിംഗിൽ ചെയ്യേണ്ട അത്യാവശ്യം കാര്യങ്ങളൊക്കെ അദ്ദേഹം എനിക്ക് പറഞ്ഞുതന്നു. ഹെൽമറ്റും മറ്റ് സുരക്ഷാ ഉപകരണങ്ങളുമൊക്കെ ധരിച്ച് ഞാനും തയ്യാറായി. സഞ്ചാരിയെ മുന്നിലും പൈലറ്റിനെ പിന്നിലുമായി പാരച്യൂട്ടിന്റെ രണ്ടു ഇരിപ്പിടങ്ങളിൽ ബന്ധിപ്പിക്കും. തുടര്ന്ന് പൈലറ്റിന്റെ സഹായികൾ പാരച്യൂട്ട് നിലത്ത് വിരിച്ചിടും. കാറ്റടിച്ച് അത് വിടരുന്നതിനനുസരിച്ച് സഞ്ചാരിയും പൈലറ്റും കൂടി മുന്നിലേക്ക് ഓടി താഴേക്ക് ചാടണം. അപ്പോൾ പാരച്യൂട്ട് പൂർണ്ണയായും വിടർന്നുയരുകയും നമ്മൾ പറക്കാനാരംഭിക്കുകയും ചെയ്യും.
ഒന്നുരണ്ടാളുകൾ പറന്നിറങ്ങുന്നത് ഞാൻ ശ്രദ്ധയോടെ നിരീക്ഷിച്ചു. ഊഴം വന്നപ്പോൾ എന്നെയും സീറ്റുമായി ബന്ധിപ്പിച്ചു. പൈലറ്റും കയറി. പാരച്യൂട്ട് വിടര്ത്തി, കാറ്റടിച്ച് അത് മുകളിലേക്കുയർന്നു, ഒപ്പം ഞങ്ങൾ മുന്നോട്ടോടി, അഗാധമായ താഴ്ചയിലേക്ക് എടുത്തുചാടി. ചാടുന്ന സമയം ശരീരത്തിന് മൊത്തത്തിൽ ഒരു ഭാരമില്ലായ്മ തോന്നി, പക്ഷെ താഴെ വീഴുന്നതിനു പകരം ഞങ്ങൾ വായുവിൽ തങ്ങിനിന്നു. താഴേക്കു നോക്കിയാൽ കാടും നഗരവും തടാകവുമൊക്കെ പലപലയിടങ്ങളിലായി ചിതറിക്കിടക്കുന്നു. ആകാശം നിറയെ പാരച്യൂട്ടുകൾ പറന്നു നടക്കുകയാണ്. അതിലൊരെണ്ണമായി ഞങ്ങളും ആകാശത്തിന്റെ ഭാഗമായിമാറി.
താംബയും ഞാനും – പറക്കലിനിടയിൽ
അല്പസമയത്തിനകം താംബ ഒരു ക്യാമറ കയ്യിലെടുത്തു. ഒരു പൈപ്പിന്റെ അറ്റത്ത് ഘടിപ്പിച്ചിട്ടുള്ള പ്രത്യേകതരം ക്യാമറയാണത്. ഒരേസമയം ഫോട്ടോയും വീഡിയോയും എടുക്കാം. തുടക്കത്തിൽ അദ്ദേഹം തന്നെ ഫോട്ടോയും വീഡിയോയും എടുത്തു, പിന്നീട് ക്യാമറ എനിക്കു കൈമാറി. അപ്പോഴേക്കും പാരച്യൂട്ട് നേപ്പാളിന്റെ ഗ്രാമങ്ങൾക്കു മുകളിലൂടെ പറക്കാൻ തുടങ്ങിയിരുന്നു. വീടുകളും കെട്ടിടങ്ങളും സ്കൂളും റോഡും കൃഷിയിടങ്ങളുമൊക്കെ ഒരു ചിത്രത്തിലെന്നപോലെ കാണപ്പെട്ടു. ചിത്രങ്ങൾ മാറിമാറി വന്നുകൊണ്ടിരുന്നു. ആകാശത്തു പറക്കുന്ന ചില പക്ഷികളൊക്കെ അസൂയയോടെ ഞങ്ങളെ നോക്കുന്നതായി തോന്നി.
ഒരു സ്വപ്നലോകത്തെന്നപോലെ ഞങ്ങൾ പറന്നുനടന്നു. നയനാനന്ദകരമായ കാഴ്ചകൾ കണ്ടും കാണുന്ന കാഴ്ചകൾ ക്യാമറയിൽ പകര്ത്തിയും പാരഗ്ലൈഡിംഗ് പുരോഗമിച്ചു. അരമണിക്കൂറോളം ഞങ്ങൾ പറന്നു നടന്നു. അല്പം സര്ക്കസ്സൊക്കെ കാണിക്കാൻ പോവുകയാണെന്ന് താംബ മുന്നറിയിപ്പുനൽകി. തുടർന്ന് അദ്ദേഹം പാരച്യൂട്ടിനെ ചരിച്ചും തിരിച്ചും പലദിശയിൽ കറക്കിയും വിവിധ അഭ്യാസങ്ങൾ കാണിക്കാൻ തുടങ്ങി. വാട്ടര് തീം പാര്ക്കിലെ റൈഡിലിരിക്കുന്ന പ്രതീതിയാണ് അപ്പോൾ തോന്നിയത്. അല്പസമയത്തിനകം ഞങ്ങള് തടാകത്തിന്റെ കരയിലുള്ള വലിയ മൈതാനത്തിനടുത്തെത്തി. പാരച്യൂട്ട് മെല്ലെ താഴ്ന്നിറങ്ങാൻ തുടങ്ങി.
പാരച്യൂട്ട് ലാന്റിംഗ്
പാരച്യൂട്ട് തറയിൽ തൊടുമ്പോൾ അല്പം മൂന്നിലേക്ക് ഓടണമെന്ന് താംബ പറഞ്ഞു തന്നിരുന്നു. അല്ലങ്കിൽ നമ്മൾ വീണുപോകാൻ സാധ്യതയുണ്ട്. എന്നാൽ അത്രയൊന്നും പ്രയാസമില്ലാതെ ഞങ്ങൾ നിലത്തിറങ്ങി. ഞങ്ങൾക്കു പിന്നിലായി പാരച്യൂട്ടും നിലത്തു വീണു. അവിടെയുണ്ടായിരുന്ന സഹായികൾ ഞങ്ങളെ സീറ്റിൽ നിന്നും മോചിപ്പിച്ചു. ഞങ്ങളെ തിരികെ നഗരത്തിലേക്കു കൊണ്ടുപോകാനുള്ള ജീപ്പ് തയ്യാറായിരുന്നു. അങ്ങനെ ജീവിതത്തിലെ അവിസ്മരണീയമായ ഒരു ഗഗനയാത്രയ്ക്ക് സമാപ്തിയായി. ഇനിയും ഒരിക്കൽ കൂടി പറക്കണമെന്ന മോഹവുമായാണ് ഞാൻ അവിടെനിന്നും യാത്രയായി.
എല്ലാവരുടെയും പുതുവർഷം പിറക്കുന്നത് ജനുവരി ഒന്നിനു തന്നെയാണോ? ചിങ്ങം ഒന്നിനും വിഷുവിനും നാം പുതുവർഷം ആഘോഷിക്കാറുണ്ടല്ലൊ. ഒരു രാജ്യത്തുതന്നെ പലതരം കലണ്ടറുകളും പലപല വർഷാരംഭങ്ങളുമുണ്ട്. അപ്പോൾ, ലോകത്തെല്ലായിടത്തുമായി എത്രതരം കലണ്ടറുകളും വർഷാരംഭങ്ങളും ഉണ്ടാകും!
കലണ്ടറും കാലവും
കാലത്തെ ദിവസം, ആഴ്ച, മാസം, വർഷം എന്നിങ്ങനെയുള്ള അളവുകളായി ക്രമീകരിച്ചിരിക്കുന്ന ഒരു സംവിധാനമാണ് കലണ്ടർ. കണക്കുകൾ ഹാജരാക്കേണ്ട ദിവസം എന്നർത്ഥം വരുന്ന കലണ്ടെ (Kalendae) എന്ന ലാറ്റിൻ പദത്തിൽ നിന്നാണ് കലണ്ടർ എന്ന വാക്കുണ്ടായത്.
പ്രകൃതിയിലെ ആവർത്തനങ്ങൾ
പ്രകൃതിയിൽ കൃത്യമായി ആവർത്തിക്കുന്ന സംഭവങ്ങളെ അടിസ്ഥാനമാക്കി സമയത്തെ അളക്കാനുള്ള ശ്രമങ്ങളിൽ നിന്നാണ് ദിവസങ്ങളും മാസങ്ങളും വർഷങ്ങളുമൊക്കെ ഉണ്ടായിട്ടുള്ളത്. രാത്രി, പകൽ എന്നിവ കൃത്യമായി ആവർത്തിച്ചു വരുന്ന സംഭവങ്ങളാണല്ലോ. മറ്റൊന്നാണ് ചന്ദ്രബിംബത്തിന്റെ ആകൃതിമാറ്റം. വെളുത്തവാവു ദിവസം പൂർണ്ണവൃത്താകൃതിയിൽ കാണപ്പെടുന്ന ചന്ദ്രബിംബം ക്രമേണ ക്ഷയിച്ച് ക്ഷയിച്ച് ചന്ദ്രക്കലയായും ഒടുവിൽ കറുത്തവാവു ദിവസം തീർത്തും കാണാതെയുമാകുന്നു. പിന്നീട് വീണ്ടും ചന്ദ്രക്കലയായി വളർന്നുവളർന്ന് പൂർണ്ണചന്ദ്രനാകുന്നു. ചന്ദ്രന്റെ വൃദ്ധിക്ഷയങ്ങൾ എന്നാണു ഇതിനെ വിളിക്കുന്നത്.
പ്രകൃതിയിൽ ആവർത്തിച്ചു സംഭവിക്കുന്ന മറ്റൊരു പ്രതിഭാസമാണ് ഋതുക്കളുടെ മാറ്റം. മഞ്ഞുകാലം (ശിശിരം), പൂക്കാലം (വസന്തം), വേനൽ (ഗ്രീഷ്മം), ഇലപൊഴിയും കാലം (ശരത്) എന്നിങ്ങനെയുള്ള ഋതുക്കൾ കൃത്യമായ ഇടവേളകളിൽ ആവർത്തിക്കപ്പെടുന്നു. കൃഷി വിജയിക്കണമെങ്കിൽ ഋതുക്കളുടെ വരവും പോക്കും കൃത്യമായി അറിഞ്ഞേ പറ്റൂ. അതിനാൽ എല്ലാ പ്രാചീന സംസ്കാരങ്ങളിലും കലണ്ടർ നിർമ്മാണം ഒഴിച്ചുകൂടാനാകാത്ത ഒന്നായിരുന്നു.
ദിവസം
പ്രകൃതിയിൽ ഏറ്റവും നന്നായി തിരിച്ചറിയാൻ കഴിയുന്ന കാലയളവുകളാണ് പകലും രാത്രിയും. ഒരു പകലും അതിനോടു ചേർന്നുവരുന്ന രാത്രിയും ചേർന്നുള്ള സമയം എല്ലായ്പ്പോഴും തുല്യമാണ്. അങ്ങനെ പകലും രാത്രിയും ചേർന്ന ദിവസം എന്ന സങ്കല്പം ഉണ്ടായി. ഇങ്ങനെയുള്ള ദിവസത്തെ 12 മണിക്കൂർ വീതമുള്ള രണ്ടു ഭാഗങ്ങളായി തിരിച്ചിരിച്ചു. 2, 3, 4, 6 എന്നീ സംഖ്യകൾകൊണ്ട് ഹരിക്കാൻ കഴിയുന്ന ഏറ്റവും ചെറിയ സംഖ്യായയതാണ് 12 ന്റെ പ്രത്യേകത. മണിക്കൂറിനെ 60 ഭാഗങ്ങളായിതിരിച്ച് മിനിറ്റുകളായും അവയെ വീണ്ടും 60 ഭാഗങ്ങളായി തിരിച്ചു സെക്കന്റുകളായും മാറ്റി. 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 എന്നീ സംഖ്യകൾകൊണ്ട് വിഭജിക്കാൻ കഴിയുന്ന ഏറ്റവും ചെറിയ സംഖ്യയാണ് 60 എന്ന പ്രത്യേകം ശ്രദ്ധിക്കുമല്ലോ.
മാസം
ചന്ദ്രന്റെ വൃദ്ധിക്ഷയങ്ങളാണ് മാസം കണക്കാക്കുന്നതിന് കാരണമായത്. ഇംഗ്ലീഷിലെ Month എന്ന വാക്കുതന്നെ ചന്ദ്രനെ അടിസ്ഥാനമാക്കിയ സമയം എന്ന അർത്ഥത്തിൽ mooneth (Moon+th) എന്ന വാക്കിൽ നിന്നും ഉത്ഭവിച്ചതാണ്. ഒരു പൗർണ്ണമിമുതൽ അടുത്ത പൗർണ്ണമി വരെയോ ഒരു അമാവാസി മുതൽ അടുത്ത അമാവാസിവരെയോ ഉള്ള സമയമാണ് ഒരു മാസമായി കരുതിയിരുന്നത്. ഇത് ഏകദേശം 29½ ദിവസങ്ങളാണ്. അര ദിവസം ഒഴിവാക്കാനായി ചില സമൂഹങ്ങൾ ഒന്നിടവിട്ട് 29ഉം 30ഉം ദിവസങ്ങളുള്ള മാസങ്ങൾ ഉപയോഗിച്ചു. മറ്റുചില സമൂഹങ്ങൾ 30 ദിവസങ്ങൾ വീതമുള്ള മാസങ്ങളും ഉപയോഗിച്ചു വന്നു. ഇത്തരത്തിലുള്ള മാസങ്ങൾ ഉപയോഗിച്ചിരുന്ന കലണ്ടറുകളെ ചാന്ദ്രകലണ്ടറുകൾ എന്നു വിളിക്കുന്നു. ചാന്ദ്ര കലണ്ടറുകളിലെ മാസങ്ങളെ രണ്ടു പക്കങ്ങളായി വിഭജിച്ചിട്ടുണ്ട്. കറുത്തവാവു മുതൽ അടുത്ത വെളുത്തവാവു വരെയുള്ള കാലത്തെ വെളുത്ത പക്കം (ശുക്ലപക്ഷം) എന്നും വെളുത്തവാവു മുതൽ കറുത്തവാവു വരെയുള്ള പക്കത്തെ കറുത്ത പക്കം (കൃഷ്ണപക്ഷം) എന്നും വിളിച്ചു. രണ്ടു വാവുകൾക്കിടയിൽ ഏകദേശം 14 ദിവസങ്ങളാണുള്ളത്.
വർഷം
12 ചാന്ദ്രമാസങ്ങൾ കൂടുമ്പോഴാണ് ഋതുക്കൾ ആവർത്തിക്കപ്പെടുന്നത് എന്ന നിരീക്ഷണത്തിൽ നിന്നും 12 മാസങ്ങൾ ചേർന്ന ഒരു വർഷം എന്ന സങ്കല്പമുണ്ടായി. 29ഉം 30ഉം ദിവസങ്ങളുള്ള മാസങ്ങൾ ചേർന്ന ചാന്ദ്രകലണ്ടറിലെ വർഷത്തിന് 354 ദിവസങ്ങളേ വരൂ. 30 ദിവസങ്ങൾ വീതമുള്ള 12 മാസങ്ങൾ ചേർന്ന ചാന്ദ്രകലണ്ടറുകൾക്കാകട്ടെ 360 ദിവസങ്ങളേ ഉണ്ടാവുകയുള്ളു. ഇത് ഒരു വർഷത്തിൽ യഥാർത്ഥത്തിലുള്ള ദിവസങ്ങളേക്കാൾ കുറവായിരുന്നതിനാൽ ഓരോ വർഷം കഴിയുമ്പോഴും ഋതുക്കൾ ആവർത്തിക്കാൻ കാലതാമസം നേരിടുമായിരുന്നു. കുറച്ചുവർഷങ്ങൾ കഴിയുമ്പോൾ ഋതുക്കൾ അടുത്തമാസത്തിലേക്ക് നീങ്ങിപ്പോകും. മാസങ്ങളും ഋതുക്കളും തമ്മിൽ പൊരുത്തപ്പെടാതാകും. മുന്നുവർഷങ്ങൾ കൂടുമ്പോൾ ഒരു അധികമാസം കൂട്ടിച്ചേർത്താണ് മെസോപ്പൊട്ടേമിയക്കാരും ഇന്ത്യക്കാരുമൊക്കെ ഇതിനെ മറികടന്നത്. 360 ദിവസങ്ങൾക്കുശേഷം 5 ഒഴിവു ദിനങ്ങൾ കൂട്ടിച്ചേർത്താണ് ഈജിപ്തുകാർ ഈ പ്രശ്നം പരിഹരിച്ചത്. പിന്നീട്, ആധുനിക കലണ്ടറുകളിൽ മാസം എന്ന സങ്കല്പം തീർത്തും ചന്ദ്രന്റെ വൃദ്ധിക്ഷയങ്ങളെ ആശ്രയിക്കാത്ത കാലയളവായി മാറി.
ഋതുചക്രം
ഋതുക്കളുടെ ആവർത്തനമാണ് വർഷം എന്ന സങ്കല്പത്തിന് ആധാരമായത് എന്നു പറഞ്ഞുവല്ലോ. ഋതുക്കളാകട്ടെ സൂര്യന്റെ അയനചലനവുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു. ഓരോ ദിവസവും സൂര്യോദയത്തിനുണ്ടാകുന്ന ദിശാമാറ്റത്തെയാണ് അയന ചലനം എന്നു വിളിക്കുന്നത്. ലോകത്തെവിടെനിന്നു നോക്കിയാലും സൂര്യൻ നേർകിഴക്ക് ഉദിക്കുന്നതായി കാണപ്പെടുന്ന രണ്ടു ദിവസങ്ങളെ ഒരു വർഷത്തിൽ ഉണ്ടാകാറുള്ളു. ആ ദിവസങ്ങളാണ് വിഷുവങ്ങൾ. ഓരോ വിഷുവത്തിനും ശേഷം സൂര്യോദയം അല്പാല്പം വടക്കോട്ടോ തെക്കോട്ടോ നീങ്ങിപ്പോകുന്നതായി കാണാം. ഒരു പരമാവധി ദൂരം (23½° കോണീയ ദൂരം) നീങ്ങിയ ശേഷം സൂര്യോദയം എതിർ ദിശയിലേക്ക് മാറുന്നു. ഇങ്ങനെ കൃത്യമായ ഇടവേളകളിൽ സൂര്യോദയം വടക്കുനിന്നു തെക്കോട്ടും തെക്കുനിന്നു വടക്കോട്ടും മാറിക്കൊണ്ടിരിക്കുന്നു. ഭൂമിയുടെ പരിക്രമണ പഥവുമായി അതിന്റെ ഭ്രമണാക്ഷത്തിന് (അച്ചുതണ്ട്) ഉള്ള ചരിവാണ് ഈ പ്രതിഭാസത്തിനു കാരണം.
സൂര്യോദയം പരമാവധി തെക്ക് എത്തുന്നതിനെ ദക്ഷിണ അയനാന്തം എന്നു വിളിക്കുന്നു. ആദിവസം ഭൂമദ്ധ്യരേഖയ്ക്ക് തെക്കുക്കുള്ള രാജ്യങ്ങളിൽ നീളംകൂടിയ പകൽ അനുഭവപ്പെടും. അവിടെ കഠിനമായ വേനൽ അനുഭവപ്പെടുന്നതും ആ കാലത്താണ്. ഭൂമദ്ധ്യരേഖയ്ക്ക് വടക്കുള്ള രാജ്യങ്ങളിലാകട്ടെ, ആ സമയത്ത് പകലിന്റെ ദൈർഘ്യം ഏറ്റവും കുറവും ശൈത്യം അതികഠിനവുമായിരിക്കും. ഉത്തര അയനാന്തത്തിൽ ഭൂമദ്ധ്യരേഖയ്ക്ക് ഇരുപുറവും ഇതിനു വിപരീതമായ അവസ്ഥയുണ്ടാകുന്നു.
ദക്ഷിണ അയനാന്തത്തിനു ശേഷം സൂര്യോദയം തെക്കുനിന്നും വടക്കോട്ടുനീങ്ങുന്നതിനെ ഉത്തരായനം എന്നുവിളിക്കുന്നു. ഉത്തരായനകാലത്ത് സൂര്യൻ നേർകിഴക്ക് ഉദിക്കുന്ന ദിവസത്തെ മാഹാവിഷുവം എന്നു വിളിക്കുന്നു. തിരിച്ച് ദക്ഷിണായനകാലത്ത് സൂര്യൻ നേർകിഴക്കുദിക്കുന്ന ദിവസത്തെ അപരവിഷുവം എന്നും വിളിക്കുന്നു. വിഷുവദിവസം ലോകത്തെല്ലായിടത്തും പകലും രാത്രിയും തുല്യമായിരിക്കും. മഹാവിഷുവകാലത്ത് വടക്കൻ പ്രദേശങ്ങളിൽ വസന്തകാലവും തെക്കൻ പ്രദേശങ്ങളി ശരത്കാലവുമായിരിക്കും, അപരവിഷുവകാലത്ത് തിരിച്ചും. ഉത്തരായനവും ദക്ഷിണായനവും ചേരുന്നതാണ് അയനചക്രം. അയനചക്രം കൃത്യമായി ആവർത്തിക്കുന്ന ഒരു പ്രതിഭാസമാണ്.
അയനചക്രത്തെ അടിസ്ഥാനമാക്കി വർഷത്തെ കൃത്യമായി കണക്കാക്കാം. ഇതിനായി ആകാശത്തിൽ സൂര്യന്റെ സ്ഥാനം നിരീക്ഷിച്ചവർക്ക് ഒരു കാര്യം മനസ്സിലായി, സൂര്യൻ അതിനു പിന്നിലെ നക്ഷത്രങ്ങളെ അപേക്ഷിച്ച് ഓരോ ദിവസവും അല്പാല്പമായി കിഴക്കോട്ടു നീങ്ങി നീങ്ങി പോകുന്നുണ്ട്. ഒരു സ്ഥാനത്തു നിന്നും ഇപ്രകാരം നീങ്ങിപ്പോകുന്ന സൂര്യൻ ഒരു വർഷം കഴിയുമ്പോൾ, ആകാശത്തെ ഒന്നുവട്ടം ചുറ്റി വീണ്ടും അതെ സ്ഥാനത്തെത്തുന്നു. ക്ലോക്കിലെ സൂചിയുടെ കറക്കം പോലെയാണിതും. സൂചിക്കു പകരം സൂര്യനും അടയാളങ്ങള്ക്കു പകരം നക്ഷത്രങ്ങളും. നക്ഷത്രങ്ങൾക്കിടയിലൂടെയുള്ള സൂര്യന്റെ ഈ സഞ്ചാരപാതയെ ക്രാന്തിവൃത്തം എന്നാണു വിളിക്കുന്നത്. യഥാർത്ഥത്തിൽ ഭൂമിയാണ് സൂര്യനു ചുറ്റും സഞ്ചരിക്കുന്നത്, ഭൂമിയിൽ നിന്നും നോക്കുന്ന നമുക്ക്, സൂര്യൻ നക്ഷത്രങ്ങൾക്കിടയിലൂടെ സഞ്ചരിക്കുന്നതായി തോന്നുന്നതാണ്.
ക്രാന്തിവൃത്തവും മാസങ്ങളും
ക്രാന്തിവൃത്തത്തിലെ സൂര്യന്റെ സ്ഥാനമാറ്റമനുസരിച്ച് ഋതുക്കളും മാറുന്നു. ഓരോ സമയത്തും സൂര്യന്റെ സ്ഥാനം മനസ്സിലാക്കി വച്ചാൽ ഋതുക്കളെയും മാസങ്ങളെയുമൊക്കെ മനസ്സിലാക്കാൻ എളുപ്പമായി. അതിനായി പ്രാചീനർ ക്രാന്തിവൃത്തത്തെ 12 തുല്യഭാഗങ്ങളായി വിഭജിച്ച്, ഓരോ ഭാഗത്തിനും അവിടെയുള്ള നക്ഷത്രക്കൂട്ടങ്ങളുടെ പേരുകൾ നൽകി. ഇങ്ങനെ, ക്രാന്തിവൃത്തത്തിന്റെ പന്ത്രണ്ടിൽ ഒരു ഭാഗത്തെ ഒരു സൂര്യരാശി എന്നു വിളിക്കുന്നു. ചിങ്ങം, കന്നി, തുലാം തുടങ്ങി കർക്കിടകം വരെയുള്ള പേരുകളാണ് രാശികൾക്ക് നൽകിയത്. ഒരു രാശിയിലൂടെ സൂര്യൻ സഞ്ചരിക്കാനെടുക്കുന്ന സമയമാണ് ഒരു മാസം. ഏതു രാശിയിലൂടെയാണോ സൂര്യൻ സഞ്ചരിക്കുന്നത്, ആ രാശിയുടെ പേരായിരിക്കും ആ മാസത്തിനുള്ളത്. ഇങ്ങനെയുള്ള മാസങ്ങളെ അടിസ്ഥാനമാക്കി നിർമ്മിച്ച കലണ്ടറുകളാണ് സൗരകലണ്ടറുകൾ. ഇതിലെ മാസങ്ങൾക്ക് ചന്ദ്രന്റെ വൃദ്ധിക്ഷയവുമായി ബന്ധമൊന്നുമില്ല. അയനാന്തങ്ങളോ വിഷുവങ്ങളോ ആണ് സൗര കലണ്ടറുകളിൽ വർഷാരംഭമായി കണക്കാക്കിയിരുന്നത്.
ആഴ്ച
മനുഷ്യന്റെ പ്രവൃത്തികളുമായി ബന്ധപ്പെട്ട ആവശ്യങ്ങൾക്ക് മാസങ്ങളെക്കാൾ ചെറിയ ഒരു കാലയളവ് അത്യാവശ്യമായിരുന്നു. പ്രത്യേകിച്ചും കുറച്ചു ദിവസങ്ങളിലെ കഠിനമായ അദ്ധ്വാനത്തിനു ശേഷം വിശ്രമിക്കാനാവശ്യമായ ഒരു ദിവസം കിട്ടത്തക്കവിധത്തിലുള്ള ഒരു കാലയളവ്. രണ്ടു വാവുകൾക്കിടയിലുള്ള 14 ദിവസങ്ങളെ 7 വീതമുള്ള രണ്ട് ആഴ്ചകളായി കണക്കാക്കുന്ന രീതി പല പ്രാചീന സംസ്കാരങ്ങളിലുമുണ്ടായിരുന്നു. കൃസ്തുവിനും ഏതാണ്ട് 2100 വർഷങ്ങൾക്കു മുമ്പ് സുമേറിലെ രാജാവായിരുന്ന ഗുഡിയ 7 മുറികളുള്ള ഒരു ക്ഷേത്രം നിർമ്മിച്ച് 7 ദിവസത്തെ ആഘോഷങ്ങളോടുകൂടി നാടിനു സമർപ്പിച്ചതായി രേഖപ്പെടുത്തിയിട്ടുണ്ട്. പ്രാചീന ബാബിലോണിയക്കാർ കറുത്തിവാവിനു ശേഷം വരുന്ന 7-ആമത്തെയും 14-ആമത്തെയും 21ആമത്തെയും 28ആമത്തെയും ദിവസങ്ങളെ നിഷിദ്ധ ദിനങ്ങളായി കണക്കാക്കിയിരുന്നു. അന്നേദിവസങ്ങളിൽ ഔദ്യാഗിക കാര്യങ്ങളോ പ്രാർത്ഥനകളോ അനുവദിച്ചിരുന്നില്ല. 7 ദിവസങ്ങളുള്ള ആഴ്ച എന്ന സങ്കപ്ലം ഇങ്ങനെയൊക്കെ വന്നതാണെന്നു കരുതുന്നു.
ഗുഡിയ (കൃ.മു. 2100)
ഇന്നു നാം കാണുന്ന രീതിയിൽ ഞായർ മുതൽ ശനിവരെ ഏഴുദിവസങ്ങളുള്ള ആഴ്ച സമ്പ്രദായം ആരംഭിച്ചത് ബാബിലോണിയക്കാരാണ്. നക്ഷത്രങ്ങളെ അപേക്ഷിച്ച് സ്ഥാനമാറ്റം വരുന്ന ആകാശവസ്തുക്കളെയാണ് പുരാതന കാലത്ത് ഗ്രഹങ്ങൾ എന്നു വിളിച്ചിരുന്നത്. സൂര്യൻ (ഞായർ), ചന്ദ്രൻ (തിങ്കൾ), ചൊവ്വ, ബുധൻ, വ്യാഴം, ശുക്രൻ (വെള്ളി), ശനി എന്നിവയായിരുന്നു പാശ്ചാത്യർക്ക് അന്നുണ്ടായിരുന്ന ഏഴു ഗ്രഹങ്ങൾ. അവർ ഓരോ ദിവസത്തിന്റെയും അധിപനായി ഒരു ഗ്രഹത്തെ കണക്കാക്കുകയും ആ ദിവസങ്ങള്ക്ക് ആ ഗ്രഹങ്ങളുടെ പേരു നൽകുകയും ചെയ്തു. എ.ഡി.321-ൽ കോൺസ്റ്റന്റൈൻ ചക്രവർത്തി ഈ ഏഴുദിന ആഴ്ച സമ്പ്രദായത്തെ ജൂലിയൻ കലണ്ടറിന്റെ ഭാഗമാക്കി. പ്രകൃതി പ്രതിഭാസങ്ങളുമായോ ജ്യോതിശാസ്ത്രവുമായോ യാതൊരു ബന്ധവുമില്ലാത്ത ഈ ആഴ്ച സമ്പ്രദായം ഇങ്ങനെയാണ് കലണ്ടറിന്റെ ഭാഗമായത്. സൂര്യനും ചന്ദ്രനുമൊന്നും നിലവിൽ ഗ്രഹങ്ങളല്ല എന്നും അറിയാമല്ലോ.
ആധുനിക കലണ്ടറിന്റെ കഥ
പഴയ റോമൻ കലണ്ടര്
പഴയകാലത്ത് റോമിൽ മാര്ച്ചിൽ തുടങ്ങി ഡിസംബറിൽ അവസാനിക്കുന്ന പത്തു മാസങ്ങളും 304 ദിവസങ്ങളുമുള്ള കലണ്ടറാണ് ഉപയോഗിച്ചിരുന്നത്. ഡിസംബറിനു ശേഷം വരുന്ന, രണ്ടുമാസം നീണ്ടുനില്ക്കുന്ന കടുത്ത ശൈത്യകാലത്ത് ഔദ്യാഗിക പരിപാടികള് ഒന്നും ഇല്ലാതിരുന്നതിനാൽ അവയെ അവധി ദിനങ്ങളായി കണക്കാക്കി കലണ്ടറിൽ നിന്നും ഒഴിവാക്കിയിരുന്നു.
പഴയ റോമൻ കലണ്ടറിലെ ആദ്യത്തെ നാലുമാസങ്ങള് യഥാക്രമം മാര്സ് (മാര്ച്ച്), അഫ്രൊഡൈറ്റ് (ഏപ്രിൽ), മൈയസ് (മെയ്), ജൂനിയസ് (ജൂൺ) എന്നീ ദേവതകളുടെ പേരിൽ അറിയപ്പെട്ടു; തുടര്ന്നു വന്ന മാസങ്ങൾ അവയുടെ ക്രമനമ്പരിന്റെ അടിസ്ഥാനത്തിലും. ഉദാഹരണത്തിന് ജൂണിനു ശേഷം അഞ്ചാമതു വന്ന മാസത്തിന്റെ പേര് ക്വിന്റിലിസ് എന്നായിരുന്നു. അഞ്ചാമത്തേത് എന്നാണ് ഇതിന്റെ അർത്ഥം. പുരാതന റോമൻ കലണ്ടറിലെ മാസങ്ങളുടെ പേരുകളും അവയുടെ അര്ത്ഥവും പട്ടികയായി നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കുമല്ലോ.
പുരാതന റോമൻ കലണ്ടർ
ആധുനിക നാമം
പഴയ ലാറ്റിൻ നാമം
ലാറ്റിൻ നാമത്തിന്റെ അര്ത്ഥം
ദിവസങ്ങൾ
മാർച്ച്
മാർട്ടിയോസ്
മാർസിന്റെ മാസം
31
ഏപ്രിൽ
അപ്രിലിസ്
അഫ്രൊഡൈറ്റിന്റെ മാസം
30
മെയ്
മൈയസ്
മൈയസ്സിന്റെ മാസം
31
ജൂൺ
ജൂനിയസ്
ജൂനിയസ്സിന്റെ മാസം
30
ജൂലൈ
ക്വിന്റിലിസ്
അഞ്ചാമത്തെ മാസം
31
ആഗസ്റ്റ്
സെക്സ്റ്റൈലിസ്
ആറാമത്തെ മാസം
30
സെപ്തംബർ
സെപ്തംബർ
ഏഴാമത്തെ മാസം
30
ഒക്ടോബർ
മെഒക്ടോബര്
എട്ടാമത്തെ മാസം
31
നവംബർ
നവംബർ
ഒമ്പതാമത്തെ മാസം
30
ഡിസംബർ
ഡിസംബർ
പത്താമത്തെ മാസം
30
പട്ടിക 1 -പുരാതന റോമൻ കലണ്ടർ
ബി.സി. 713ൽ റോമൻ രാജാവായിരുന്ന നൂമാ പോമ്പീലിയസ് ജാനസ് ദേവന്റെ പേരില് ജനുവരിയും ഫെബ്രുവസ് ദേവന്റെ പേരിൽ ഫെബ്രുവരിയും റോമൻ കലണ്ടറിൽ കൂട്ടിച്ചേര്ത്തു. അങ്ങനെ 12 മാസങ്ങളും 354 ദിവസങ്ങളുമുള്ള ഒരു ചാന്ദ്രകലണ്ടറായി റോമൻ കലണ്ടർ മാറി.
ജൂലിയൻ കലണ്ടർ
ജൂലിയസ് സീസർ
ഋതുക്കളുടെ ആവര്ത്തനം സൂര്യന്റെ അയന ചലനവുമായി ബന്ധപ്പെട്ടാണുള്ളതെന്നും ചാന്ദ്രക്കലണ്ടറുകള്ക്കനുസരിച്ച് ഋതുക്കൾ ആവര്ത്തിക്കുന്നില്ല എന്നും അപ്പോഴേക്കും മനസ്സിലാക്കിയിരുന്നു. ബി.സി. 46-ൽ റോമൻ ചക്രവര്ത്തിയായിരുന്ന ജൂലിയസ് സീസര് 365.25 ദിവസങ്ങളുള്ള സൗര കലണ്ടര് സമ്പ്രദായം സ്വീകരിച്ചുകൊണ്ട് വീണ്ടും കലണ്ടർ പരിഷ്കരിച്ചു. ഇതാണ് ജൂലിയൻ കലണ്ടര്. ഈ കലണ്ടറിൽ സാധാരണ വര്ഷങ്ങളിൽ 365 ദിവസങ്ങളും, നാലു വര്ഷങ്ങള് കൂടുമ്പോഴുള്ള അധിവർഷങ്ങളിൽ 366 ദിവസങ്ങളുമാണുള്ളത്.
ജൂലിയൻ കലണ്ടര് നടപ്പാക്കിയശേഷം വന്ന ബി.സി. 45ലെ ജനുവരി 1 ഒരു അമാവാസിയായിരുന്നു. അതൊരു ശുഭലക്ഷണമായിക്കണ്ട ജനങ്ങള് ജനുവരി 1 പുതുവര്ഷാരംഭമായി ആഘോഷിച്ചു. അങ്ങനെ ആദ്യമാസമെന്ന പദവി മാര്ച്ചിനു നഷ്ടമായി. പിന്നീട് റോമൻ സെനറ്റ് ജൂലിയസ് സീസറിന്റെയും അഗസ്റ്റസ് സീസറിന്റെ ബഹുമാനാര്ത്ഥം ക്വിന്റിലിസിന്റെ പേര് ജൈലൈ എന്നും സെക്സ്റ്റൈലിസിന്റെ പേര് ആഗസ്റ്റ് എന്നുമാക്കി മാറ്റി. മാസത്തിലെ ദിവസങ്ങളുടെ എണ്ണവും ഇന്നത്തെ രീതിയിൽ പരിഷ്കരിക്കപ്പെട്ടു.
ഗ്രിഗോറിയൻ കലണ്ടര്
365.25 ദിവസങ്ങളാണല്ലോ ഒരു വര്ഷമായി കണക്കാക്കിയിരുന്നത്. എന്നാൽ ഒരു വര്ഷത്തിന്റെ യഥാർത്ഥ ദൈര്ഘ്യം ഇതിനേക്കാൾ അല്പം കുറവാണ്, കൃത്യമായി പറഞ്ഞാൽ 365.2422 ദിവസങ്ങള്. ഒറ്റനോട്ടത്തിൽ നിസ്സാരമെന്നു തോന്നുമെങ്കിലും ഈ വ്യത്യാസം 1000 വര്ഷങ്ങൾകൊണ്ട് 8 ദിവസത്തോളം എത്തും. ഇതുമൂലം, ജൂലിയൻ കലണ്ടര് നടപ്പാക്കി 1500 വര്ഷങ്ങള് കഴിഞ്ഞപ്പോഴേക്കും ഋതുക്കളും അവയുമായി ബന്ധപ്പെടുത്തി ആഘോഷിക്കുന്ന കൃസ്തുമസ്, ഈസ്റ്റര് തുടങ്ങിയ വിശേഷദിനങ്ങളും തമ്മിൽ തീരെ പൊരുത്തപ്പെടാതായി. ഇതു പരിഹരിക്കാനായി ഗ്രിഗറി പതിമൂന്നാമൻ മാര്പ്പാപ്പ ഗണിതശാസ്ത്രജ്ഞൻമാരായിരുന്ന ലിലിയസ്സിന്റെയും ക്ലാവിയൂസിന്റെയും ഉപദേശപ്രകാരം എ.ഡി. 1582ൽ കലണ്ടര് വീണ്ടും പരിഷ്കരിച്ചു. അധികമായി വന്നുചേർന്ന ദിവസങ്ങൾ പരിഹരിക്കുന്നതിനായി 1582ഒക്ടോബര് 4നു ശേഷം വന്ന 10 ദിവസങ്ങൾ കലണ്ടറിൽ നിന്നും വെട്ടിക്കുറച്ചു. അതായത് ഒക്ടോബര് 4 വ്യാഴാഴ്ചയ്ക്കുശേഷം വരുന്ന ദിവസം ഒക്ടോബര് 15 വെള്ളിയാഴ്ചയായിരിക്കും എന്നു പ്രഖ്യാപിച്ചു. കൂടുതൽ കൃത്യത വരുത്താനായി, നൂറുകളിൽ അവസാനിക്കുന്ന (രണ്ടു പൂജ്യത്തിൽ അവസാനിക്കുന്ന) വര്ഷങ്ങളിൽ 400കൊണ്ട് ഹരിക്കാൻ കഴിയുന്നവയെ മാത്രം അധിവര്ഷങ്ങളായി കണക്കാക്കിയാൽ മതി എന്നും തീരുമാനിച്ചു. ഉദാഹരണത്തിന് 2000 ഒരു അധിവർഷവും 2100 ഒരു സാധാരണ വർഷവുമാണ്. ഇതാണ് ഇന്നത്തെ ഗ്രിഗോറിയൻ കലണ്ടര്.
അധിവർഷം കണക്കാക്കുന്നതിനുള്ള രീതി
അധിവർഷമാണോ അല്ലയോ എന്ന് കണ്ടെത്തുന്നതിനുള്ള രീതി
1. വർഷത്തെ 4 കൊണ്ട് നിശ്ശേഷം ഹരിക്കാൻ കഴിയുന്നില്ലങ്കിൽ അത് സാധാരണ വർഷം.
അല്ലങ്കിൽ,
2. അതിനെ 100 കൊണ്ട് നിശ്ശേഷം ഹരിക്കാൻ കഴിയുന്നില്ലങ്കിൽ അത് അധിവർഷം.
അല്ലങ്കിൽ
3. അതിനെ 400 കൊണ്ട് ഹരിക്കാൻ കഴിയുന്നുണ്ടെങ്കിൽ അധിവർഷം
അല്ലങ്കിൽ
4. അതൊരു സാധാരണ വർഷം.
കൊല്ലവർഷ കലണ്ടർ
കേരളത്തിന്റെ സ്വന്തമായ സൗരകലണ്ടറാണ് കൊല്ല വർഷകലണ്ടർ. ഭരതത്തിലെ മറ്റു മിക്ക കലണ്ടറുകളും ചന്ദ്രമാസങ്ങളെ അടിസ്ഥാനമാക്കിയപ്പോൾ കൊല്ലവർഷ കലണ്ടറിൽ പൂർണ്ണമായും സൗരമാസങ്ങളാണ് ഉപയോഗിച്ചിരിക്കുന്നത്. എ.ഡി. 825ൽ വേണാട്ടിലെ രാജാവായ രാജശേഖരവർമ്മ കൊല്ലം പട്ടണത്തിൽ വച്ച് ആവിഷ്കരിച്ചതാണ് ഈ കലണ്ടർ എന്നു കരുതപ്പെടുന്നു. ചിങ്ങം, കന്നി, തുലാം, വൃശ്ചികം, ധനു, മകരം, മീനം, മേടം, ഇടവം, മിഥുനം, കർക്കിടകം എന്നിങ്ങനെ ക്രാന്തിവൃത്തത്തിലുള്ള 12 നക്ഷത്രക്കൂട്ടങ്ങളുടെ പേരുകളാണ് മാസങ്ങള്ക്ക് നൽകിയിട്ടുള്ളത്. ഓരോ നക്ഷത്രക്കൂട്ടത്തിലൂടെയും സര്യൻ സഞ്ചരിക്കാനെടുക്കുന്ന സമയമനുസരിച്ച് 28 മുതൽ 32വരെ ദിവസങ്ങളുള്ള മാസങ്ങളുണ്ട്. സൗരമാസങ്ങള്ക്കനുസരിച്ച് തയ്യാറാക്കിയതായതിനാൽ കൃഷിക്ക് ഏറ്റവും അനുയോജ്യമായ കലണ്ടറായിരുന്നു ഇത്. കാലത്തിനൊത്ത് പരിഷ്കരിക്കപ്പെടാത്തതിനാൽ 1500 വർഷം മുമ്പുണ്ടായിരുന്ന വിഷുവദിനമാണ് ഇന്നും ഇതിലുള്ളത് എന്നൊരു പോരായ്മയും ഉണ്ട്.
കലണ്ടറുകൾ – കാലത്തിന്റെ അടയാളങ്ങൾ
ഗ്രിഗോറിയൻ കലണ്ടറല്ലാതെ നിരവധി കലണ്ടറുകള് ലോകത്തെമ്പാടും ഉപയോഗിക്കപ്പെടുന്നുണ്ട്. ശകവർഷത്തെ ആധാരമാക്കി തയ്യാറാക്കിയ കലണ്ടറാണ് ഇന്ത്യയുടെ ഔദ്യോഗിക കലണ്ടർ. വർഷത്തിലെ 12 ചാന്ദ്രമാസങ്ങളെ അടിസ്ഥാനപ്പെടുത്തി തയ്യാറാക്കിയതും ഇന്നും പ്രചാരത്തിലുള്ളതുമാണ് ഇസ്ലാമികകലണ്ടർ. പലപല രാജ്യങ്ങളിലും സംസ്കാരങ്ങളിലുമായി എത്രയോ ആയിരം കലണ്ടറുകളുണ്ട്. കാലത്തെ അടയാളപ്പെടുത്താനുള്ള മനുഷ്യന്റെ ശ്രമങ്ങള് കലണ്ടറുകളായി ഇന്നും ജിവിക്കുന്നു.
“വേണ്ടന്നെ, മനുഷ്യന് വെറും കണ്ണുകൊണ്ട് ആകാശത്ത് കാണാൻ കഴിയുന്നവയാണ് ശുക്രൻ, വ്യാഴം, ശനി, ചൊവ്വ, ബുധൻ എന്നീ 5 ഗ്രഹങ്ങൾ. ഇവയിൽ പലതിനെയും നിത്യവും നാം ആകാശത്ത് കാണാറുണ്ട്. കണ്ടാൽ നക്ഷത്രങ്ങളെ പോലെ തോന്നുന്നതിനാൽ തിരിച്ചറിയാറില്ല എന്നു മാത്രം. ഇവയിൽ തന്നെ ബുധൻ ഒഴികെയുള്ള എല്ലാ ഗ്രഹങ്ങൾക്കും സാധാരണ നക്ഷത്രങ്ങളെക്കാൾ തിളക്കമുണ്ട്. അതിനാൽ തന്നെ നക്ഷത്രങ്ങള്ക്കിടയിൽ അവയെ തിരിച്ചറിയാനും എളുപ്പമാണ്.”
“അതൊക്കെ പോട്ടെ, ഒരു ഗ്രഹത്തെയെങ്കിലും കണ്ടെത്താനുള്ള മാർഗ്ഗം പറയാമോ?”
“ഇന്നുതന്നെ സന്ധ്യയ്ക്ക് പടിഞ്ഞാറെ ആകാശത്തേക്കു നോക്കുക. ചക്രവാളത്തോടുചേർന്ന് (ആകാശവും ഭൂമിയും കൂട്ടിമുട്ടുന്നതായി തോന്നുന്ന ഭാഗം) വലിയ തിളക്കത്തിൽ, വലിയ ഒരു ബൾബ് കത്തുന്നത്രയും തിളക്കത്തിൽ, ഒരു വസ്തുവിനെ കാണാം. അത് ശുക്രനാണ്. അതിനു മുകളിലായി തിളക്കമുള്ള മറ്റൊരു വസ്തു കാണുന്നത് ശനിയാണ്. ശനിക്കും മുകളിലായി, ശനിയേക്കാളും തിളക്കത്തിൽ കാണുന്നത് വ്യാഴവും”
നഗ്ന നേത്രങ്ങളാൽ കാണാൻ കഴിയുന്ന അഞ്ചുഗ്രഹങ്ങളെയും ഒരേസമയം ആകാശത്ത് അപൂർവ്വമായെ കാണാൻ സാധിക്കൂ. എന്നാൽ ഇപ്പറഞ്ഞ മൂന്നു ഗ്രഹങ്ങളെയും ഒന്നിച്ചുകാണാൻ കഴിയുന്ന നല്ലൊരു അവസരമാണിപ്പോൾ.
ജ്യാമിതിയിലെ തന്നെ ഏറ്റവും ലളിതമായ രൂപങ്ങളിൽ ഒന്നോണല്ലോ കോണുകൾ. കോണിനെ അളക്കുന്നത് എങ്ങനെയെന്നു നോക്കാം.
ഒരു പൊതുബിന്ദുവിൽ നിന്നും ആരംഭിക്കുന്ന രണ്ടു നേർരേഖകൾ ഉൾപ്പെടുന്ന ജ്യാമിതീയ രൂപമാണ് കോൺ. ഈ പൊതുബിന്ദുവിനെ ശീർഷം എന്നും രേഖകളെ ഭുജങ്ങൾ വിളിക്കുന്നു. ഒരു ബിന്ദുവിൽ കൂട്ടിമുട്ടുന്ന രണ്ടു നേർവരകൾ തമ്മിലുള്ള ചരിവാണ് കോൺ എന്നും പറയാറുണ്ട്. കോണിന്റെ വലിപ്പത്തെയും കോൺ എന്നു തന്നെയാണ് പറയുന്നത്. ഡിഗ്രി, റേഡിയൻ എന്നീ യുണിറ്റുകളിലാണ് കോൺ അളക്കാറുള്ളത്.
കോണിന്റെ ചരിവ്
രണ്ടു നേർവരകൾക്ക് പൊതുവായ ഒരഗ്രം (ശീർഷം) ഉണ്ടെങ്കിൽ അങ്ങനെയുണ്ടാകുന്ന ജ്യാമിതീയ രൂപം ഒരു കോൺ അണെന്നു പറഞ്ഞല്ലോ. രണ്ടു നേര്വരകളും ഒന്നിനോടൊന്നു ചേര്ന്നിരുന്നാൽ കോൺ രൂപപ്പെടുന്നില്ല, അഥവാ കോണിന്റെ അളവ് പൂജ്യമാണെന്നു കരുതാം. ഇരു വരകളിലെയും (ശീർഷമൊഴികെയുള്ള) ബിന്ദുക്കൾ തമ്മിൽ അകലാൻ തുടങ്ങുന്നതോടെ, വരകൾ തമ്മിൽ ഒരു ചരിവ് രൂപപ്പെടുന്നു അഥവാ കോണ് രൂപപ്പെടുന്നു. ചരിവ് കൂടുന്തോറും കോണും വലുതായി വരുന്നു.
ഒരു കോണിന്റെ ഭുജങ്ങൾ തമ്മിലുള്ള ചരിവിനെയും കോണളവായി കണക്കാക്കാറുണ്ട്. ഉദാഹരണത്തിന് ചിത്രത്തിൽ OA, OB എന്നീ രണ്ടു വരകൾ O എന്ന ബിന്ദുവിൽ ചേര്ന്നിരിക്കുന്നു. OA യിലെ ഒരു ബിന്ദുവിൽ നിന്നും OB-യിലേക്കുള്ള ലംബദൂരം കണക്കാക്കാൻ സാധിക്കും. ഉദാഹരണത്തിന് OA-യിലെ P എന്ന ബിന്ദൂവിൽ നിന്നും OB യിലേക്കുള്ള ലംബദൂരമാണ് PQ. ലംബദൂരത്തെ ഉയരം എന്നും വിളിക്കാം. ഉദാഹരണത്തിന് ഇവിടെ O എന്ന ശീര്ഷത്തിൽ നിന്നും P യിലേക്കുള്ള ദൂരം OP-യും ആ ദൂരത്തിൽ നിന്നും OB-യിലേക്കുള്ള ഉയരം PQ-ഉം ആണ്.
ചിത്രം നിരീക്ഷിച്ചാൽ ചരിവ് കൂടുന്തോറും ഉയരം കൂടി വരുന്നതായി കാണാം.
ഒരേ കോണിന്റെ തന്നെ വ്യത്യസ്തദൂരങ്ങളിലേക്കുള്ള ഉയരങ്ങള് വ്യത്യാസപ്പെട്ടിരിക്കുന്നു.
ചിത്രത്തിൽ AP എന്ന ദൂരം 4 യൂണിറ്റും PX എന്ന ഉയരം 2യൂണിറ്റുമാണ്. AQ എന്ന ദൂരം 8യുണിറ്റും QY എന്ന ഉയരം 4യൂണിറ്റുമാണ്. അതുപോലെ AR എന്ന ദുരം 10 യൂണിറ്റും RZ എന്ന ഉയരം 5യുണിറ്റുമാണ്. ദൂരത്തിനനുസരിച്ച് ഉയരം വ്യത്യാസപ്പെടുമെങ്കിലും ഉയരത്തെ അകലം കൊണ്ടു ഹരിച്ചുകിട്ടുന്ന സംഖ്യ വ്യത്യാസപ്പെടുന്നില്ല.
ഉദാഹരണത്തിന് ചിത്രത്തിൽ,
AP ÷ PX = 2÷4 = ½
AQ ÷ QY = 4÷8 = ½
AR ÷ RZ = 5÷10 = ½
എന്നിങ്ങനെ കിട്ടുന്നു.
ഒരു കോണിന്റെ ഒരു ഭുജത്തിലെ ഏതൊരു ബിന്ദുവിൽ നിന്നും മറ്റേ ഭുജത്തിലേക്കുള്ള ഉയരവും ശീർഷത്തിൽ നിന്നും ആ ബിന്ദുവിലേക്കുള്ള ദൂരവും തമ്മിൽ ഹരിച്ചുകിട്ടുന്നത് ഒരു സ്ഥിരസംഖ്യ ആയിരിക്കും. ഈ സ്ഥിരസംഖ്യയാണ് കോണിന്റെ ചരിവ്. അതായത് ഇവിടെ തന്നിട്ടുള്ള ചിത്രത്തിലെ കോണിന്റെ ചരിവ് ½ ആണ്.
ചരിവിനെ ശതമാനമായും പറയാറുണ്ട്. ½ എന്നതിനെ 50% എന്നും പറയാമല്ലോ. റോഡിന്റെയും മറ്റും ചരിവ് ശതമാനമായാണ് കാണിക്കാറുള്ളത്. റോഡിന്റെ ചരിവ് 25% എന്നൊരു ബോർഡുകണ്ടാൽ അതിനർത്ഥം ഓരോ 100മിറ്റര് മുന്നോട്ടുപോകുമ്പോഴും ഉയരം 25മീറ്റർ വർദ്ധിക്കുന്നു എന്നാണ്.
ഡിഗ്രി അളവ്
കോണിന്റെ ശീർഷത്തെ കേന്ദ്രമാക്കി അതിന്റെ ഒരു ഭൂജം ചുറ്റിത്തിരിയുന്നു എന്നിരിക്കട്ടെ, ഭുജം തിരിയുംതോറും അതിലെ ബിന്ദുക്കൾ വൃത്താകൃതിയിൽ സഞ്ചരിക്കാൻ തുടങ്ങുമല്ലോ. ഒരു ബിന്ദു ഒരു വൃത്തം പൂര്ത്തിയാക്കുമ്പോൾ ഭുജം വീണ്ടും പഴയസ്ഥാനത്ത് എത്തിയിരിക്കും. ക്ലോക്കിലെ ഒരു സൂചി ഒരു സ്ഥാനത്തുനിന്നും കറങ്ങാനാരംഭിച്ച് വീണ്ടും അതേ സ്ഥാനത്ത് എത്തിച്ചേരുന്നതുമായി ഇതിനെ താരതമ്യപ്പെടുത്താം.
സൂചിയുടെ തിരിവിനെ, ആകെവൃത്തത്തിന്റെ എത്രഭാഗം അത് തിരിഞ്ഞു എന്നതുമായി ബന്ധപ്പെടുത്തി അളക്കാൻ സാധിക്കും. ഉദാഹരണത്തിന് സൂചി നേരെ എതിർഭാഗത്തെത്തുമ്പോൾ ആകെ വൃത്തത്തിന്റെ പകുതി (½) ഭാഗം പൂര്ത്തിയാക്കിയിരിക്കും. സൂചി അതിന്റെ ആദ്യസ്ഥാനത്തിന് ലംബമായി എത്തുമ്പോഴാകട്ടെ, ആകെ വൃത്തത്തിന്റെ കാൽഭാഗം (¼) ആയിരിക്കും പൂർത്തിയാക്കിയിരിക്കുക. ഒരു പൂർണ്ണ വൃത്തം പൂര്ത്തിയാക്കുമ്പോൾ 360 ഡിഗ്രി തിരിഞ്ഞതായാണ് പുരാതന ഗണിതജ്ഞർ കണക്കാക്കിയിരുന്നത്. ഡിഗ്രി എന്ന യൂണിറ്റിനെ ‘°’ എന്ന ചിഹ്നം കൊണ്ടു സൂചിപ്പിക്കുന്നു. അപ്പോൾ പകുതി വൃത്തം പൂർത്തിയാക്കാൻ 180° തിരിയണം. കാൽ വൃത്തം പൂർത്തിയാക്കാൻ 90° തിരിയണം. ഈ തിരിവിനെ കോണിന്റെ അളവായും കണക്കാക്കാം.
ഉദാഹരണത്തിന് ഒരു വൃത്തത്തിന്റെ പകുതിയും വൃത്തകേന്ദ്രവും ഉൾപ്പെടുന്ന കോണിന്റെ അളവ് ½ X 360° = 180°ആയിരിക്കും. ഒരു വൃത്തത്തിന്റെ കാൽഭാഗവും വൃത്തകേന്ദ്രവും ഉൾപ്പെടുന്ന കോണിന്റെ അളവ് ¼ X 360° = 90°ആയിരിക്കും. ഇപ്രകാരം ഒരു വൃത്തത്തെ 6 തുല്യഭാഗങ്ങളാക്കിയാൽ അതിലൊരു ഭാഗം വൃത്തകേന്ദ്രത്തിലുണ്ടാക്കുന്ന കോൺ ⅙ X 360° = 60° ആയിരിക്കുമല്ലോ.
വൃത്തത്തിന്റെ അളവ് 360° ആയ കഥ
സാധാരണ അളവുകൾ 10, 100, 1000 എന്നിങ്ങനെ 10ന്റെ കൃതികളായാണ് പറയാറുള്ളത്. ഉദാഹരണത്തിന് 1000 മീറ്ററാണല്ലോ ഒരു കിലോ മീറ്റർ. എന്നാൽ വൃത്തത്തിന്റെ അളവ് 360 ഡിഗ്രിയായാണ് കണക്കാക്കിയിരിക്കുന്നത്. ഇതിനെ സംബന്ധിച്ച് രണ്ടുതരത്തിലുള്ള വാദങ്ങളാണുള്ളത്.
ഭൂമി സൂര്യനെ ചുറ്റിക്കറങ്ങുമ്പോൾ, ഭൂമിയിൽ നിന്നു നിരീക്ഷിക്കുന്ന നമുക്ക് സൂര്യൻ ആകാശത്തിലെ നക്ഷത്രങ്ങൾക്കിടയിലൂടെ വൃത്താകൃതിയിൽ സഞ്ചരിക്കുന്നതായാണ് തോന്നുന്നത്.
അതായത് സൂര്യൻ, അതിന്റെ സമീപസ്ഥ നക്ഷത്രങ്ങളിൽനിന്നും പ്രതിദിനം അകന്നു പോകുന്നതായി തോന്നുന്നു. അങ്ങനെ ഒരു നക്ഷത്രത്തിൽ നിന്നും അകന്നു പോകുന്ന സൂര്യൻ, ആകാശഗോളത്തിലൂടെ വൃത്താകൃതിയിൽ സഞ്ചരിച്ച്, വീണ്ടും അതെ നക്ഷത്രത്തോടൊപ്പം എത്താൻ ഒരു വര്ഷമെടുക്കും. ഇതിനെ ഏകദേശം 360 ദിവസങ്ങളായാണ് പുരാതന മനുഷ്യൻ കണക്കാക്കിയത്. അപ്പോൾ സൂര്യൻ ഓരോ ദിവസവും ആകെ വൃത്തത്തിന്റെ 360ൽ ഒരു ഭാഗം വീതം പൂര്ത്തിയാക്കുമല്ലോ. അതിനെ ഒരു ഡിഗ്രിയായും ആകെ വൃത്തത്തെ 360° ആയും കണക്കാക്കി എന്നതാണ് ആദ്യത്തെ വാദം. വർഷത്തിന്റെ അളവ് 365¼ ദിവസം എന്നു കണ്ടെത്തിയെങ്കിലും വൃത്തത്തിന്റെ ഡിഗ്രി അളവ് 360 ആയി തുടര്ന്നു.
സമഭുജതൃകോണത്തിന്റെ കോണളവുമായി ബന്ധപ്പെട്ടതാണ് രണ്ടാമത്തെ വാദം. ഒരേ വലിപ്പമുള്ള മൂന്നു കമ്പുകൾ ചേര്ത്ത് ഒരു ത്രികോണമുണ്ടാക്കിയാൽ ആ ത്രികോണത്തിന്റെ കോണുകളെല്ലാം, ലോകത്തെവിടെയും തുല്യമായിരിക്കുമല്ലോ. ഏതൊരാൾക്കും അളവുപകരണങ്ങളുടെ സഹായമൊന്നുമില്ലാതെ ഒരേ അളവിൽ സൃഷ്ടിക്കാൻ കഴിയുന്ന കോണാണ് ഒരു സമഭുജ ത്രികോണത്തിന്റെ ഒരു കോണ്. അതിനാൽ അതിനെ കോണുകള ുടെ സാർവ്വത്രിക ഏകകമായി എടുക്കാവുന്നതാണ്. ഇങ്ങനെയുണ്ടാകുന്ന കോൺ പക്ഷേ സാമാന്യം വലിയ ഒന്നാണ്. അതിനാൽ അന്നത്തെ സമ്പ്രദായം അനുസരിച്ച് ഈ കോണിനെ 60 തുല്യഭാഗങ്ങളാക്കി വിഭജിച്ചു. 60 അടിസ്ഥാനമായ സംഖ്യാ സമ്പ്രദായം അന്ന് ഏറെ പ്രചാരത്തിലുണ്ടായിരുന്നല്ലോ. മണിക്കൂറിനെയും മിനിറ്റിനെയുമൊക്കെ 60 ഭാഗങ്ങളായാണല്ലോ വിഭജിച്ചിട്ടുള്ളത്. 2,3,4,5,6,10,12,15,20,30 എന്നീ സംഖ്യകൾകൊണ്ടെല്ലാം ഹരിക്കാവുന്ന ഏറ്റവും ചെറിയ സംഖ്യയാണ് 60 എന്നതാണ് അതിന്റെ പ്രത്യേകത. അങ്ങനെ സമഭുജ ത്രികോണത്തിന്റെ ഒരു കോണിന്റെ 1/60 ഭാഗം കോണിന്റെ യൂണിറ്റ് അളവായി മാറി.
ഒരു വൃത്തകേന്ദ്രത്തിൽ 6 സമഭുജ ത്രികോണങ്ങൾ ഉൾപ്പെടുത്താനാകും. അങ്ങനെ വൃത്തത്തിന്റെ ആകെ അളവ് 360° ആയി എന്നതാണ് രണ്ടാമത്തെ വാദം. ഈ വാദത്തിനാണ് കൂടുതൽ സ്വീകാര്യത കിട്ടിടിട്ടുള്ളത്.
റേഡിയന്
കോണിനെ മറ്റൊരു രീതിയിലും അളക്കാം. കോൺ ഉൾക്കൊള്ളുന്ന വൃത്തഭാഗം അതിന്റെ ആരത്തിന്റെ എത്രമടങ്ങാണ് എന്നു കണക്കാക്കുകയാണ് ഈ രീതി. വൃത്തത്തിന്റെ ഒരു ഭാഗത്തെ ചാപം എന്നാണല്ലോ വിളിക്കുന്നത്. ചാപത്തിന്റെ നീളം s, അതിന്റെ ആരം r എന്നിവ ആണങ്കിൽ, ആ ചാപം ഉൾക്കൊള്ളുന്ന കോണിന്റെ അളവ് s/r ആയിരിക്കും. ഈ അളവിന്റെ യൂണിറ്റ് റേഡിയൻ ആണ്. x റേഡിയൻ എന്ന അളവ് x rad എന്നെഴുതും.
ഒരു പൂർണ്ണവൃത്തത്തിന്റെ ചുറ്റളവ് 2πr ആണെന്ന് അറിയാമല്ലോ. അപ്പോൾ ഒരു പൂർണ്ണവൃത്തത്തിന്റ റേഡിയൻ അളവ് 2πr ÷ r = 2π റേഡിയൻ ആണ്. അതുപോലെ അർദ്ധവൃത്തത്തിന്റെ കോണളവ് π റേഡിയനും കാൽ വൃത്തത്തിന്റെ റേഡിയൻ അളവ് π/2 റേഡിയനും ആയിരിക്കും.
ഒരു വൃത്തത്തിന്റെ ചുറ്റളവിനെ അതിന്റെ വ്യാസംകൊണ്ടു ഹരിച്ചുകിട്ടുന്ന സംഖ്യയെ സൂചിപ്പിക്കുന്ന ഗ്രീക്ക് അക്ഷരമാണ് π (പൈ). ഇതിന്റെ ഏകദേശ വില 3.14 ആണ്.
ഒരു കോണിന്റെ റേഡിയൻ അളവിനെ 180/π കൊണ്ടു ഗുണിച്ചാൽ അതേ കോണിന്റെ ഡിഗി അളവ് കിട്ടും.
ഉദാ: ¼π rad = ¼π X 180/π = 45°
1 rad = 180/π = 180/3.14 = 57.3°.
അന്താരാഷ്ട്രതലത്തിൽ ഉപയോഗിക്കുന്ന SI യൂണിറ്റ് വ്യവസ്ഥയിൽ കോണിന്റെ യുണിറ്റായി റേഡിയനെ ആണ് അംഗീകരിച്ചിട്ടുള്ളത്. എന്നിരുന്നാലും റേഡിയൻ താരതമ്യേന വലിയ ഒരു അളവായതിനാൽ സാധാരണ ആവശ്യങ്ങൾക്കായി ഡിഗി അളവുകളാണ് ഉപയോഗിക്കുന്നത്.
2021 ജൂൺ 29 ലെ മാതൃഭൂമി പത്രത്തിലെ വിദ്യ യിൽ പ്രസിദ്ധീകരിച്ചത്.
മിക്ക സംസ്ഥാനങ്ങളും കോവിഡ് നിയന്ത്രണത്തിന്റെ ഭാഗമായി രാത്രികാല കര്ഫ്യൂ ഏര്പ്പെടുത്തുകയാണ്. അതെന്താ, രാത്രിയിലാണോ കോറോണ ഇര തേടി ഇറങ്ങുന്നത് എന്നാണ് പൊതുവെ സംശയിക്കപ്പെടുന്നത്. ഇതുമായി ബന്ധപ്പെട്ട ധാരാളം ട്രോളുകളും കാണാം.
രാത്രികാല നിയന്ത്രണമല്ല, പകല് നിയന്ത്രണങ്ങള് തന്നെയാണ് കോവിഡ് പ്രതിരോധത്തിനു വേണ്ടത്. സാനിറ്റൈസര്, മാസ്ക്, സോഷ്യൽ ഡിസ്റ്റന്സിംഗ് (SMS) ഇവയാണ് ഇപ്പോഴും പ്രധാനം. പകല് ലോക്ഡൗണാണ് നിയന്ത്രണങ്ങളില് ഏറെ ഫലപ്രദം. എന്നിട്ടും രാത്രി കാല നിയന്ത്രണം എന്തുകൊണ്ട്?
രാത്രികാല നിയന്ത്രണം ഏര്പ്പെടുത്തുന്നു എന്നതുകൊണ്ട് പകല് പ്രോട്ടോക്കോൾ പാലിക്കേണ്ട എന്ന് അര്ത്ഥമില്ല. അതു പാലിക്കുക തന്നെ വേണം.
കഴിഞ്ഞ വര്ഷത്തെ പോലെ ഒന്നോ രണ്ടോ മാസത്തെ സമ്പൂർണ്ണ ലോക്ഡൗണ് ഏതാണ്ട് അസാധ്യമാണ്. മനുഷ്യന്റെ ജീവനോപാധികള് ഇല്ലാതാവുകയും രാജ്യത്തിന്റെ സാമ്പത്തിക നില തകരുകയും ചെയ്യുന്നതോടെ കൊറോണ വന്നു ചത്താലും വേണ്ടില്ല, തങ്ങൾക്ക് ഭക്ഷണവും തൊഴിലും വേണം എന്ന നിലയില് ജനങ്ങൾ നിയമം ലംഘിക്കുകയും കാര്യങ്ങൾ അരാജകത്വത്തിലേക്ക് നീങ്ങുകയും ചെയ്യും.
എന്നാൽ ജനങ്ങളുടെ കൂട്ടം ചേരലുകളെ പരമാവധി കുറയ്ക്കുകയും വേണം. അതിന് അത്യാവശ്യമില്ലാത്ത സമയങ്ങളിൽ ജനങ്ങളെ പൊതു സ്ഥലങ്ങളില് നിന്നും പരമാവധി അകറ്റി നിര്ത്തുക എന്ന മാര്ഗ്ഗം ഉപയോഗപ്പെടുത്തുന്നു. ഇതിന്റെ ഭാഗമാണ് രാത്രികാല കര്ഫ്യൂ. തീര്ച്ചയായും ഇത് രോഗവ്യാപനം കുറയ്ക്കാന് ചെറിയ തോതിലെങ്കിലും സഹായകമാകും. (ഓര്ക്കുക, രോഗവ്യാപനം കുറയ്ക്കാനുതകുന്ന ഏതു മാര്ഗ്ഗവും നാം പ്രയോജനപ്പെടുത്തണം.)
രാത്രികാല നിയന്ത്രണങ്ങള് ജനങ്ങള മാനസികമായി ജാഗരൂകരാക്കും. സമൂഹം ഒരു മഹാമാരിയിലൂടെ കടന്നുപോവുകയാണെന്നും നിയന്ത്രണങ്ങള് പാലിക്കപ്പെടേണ്ടതാണെന്നും അത് അവരെ ഓര്മ്മപ്പെടുത്തും.
24 മണിക്കൂറും ജാഗരൂകരായിരിക്കേണ്ട പൊതു സേവന സംവിധാനങ്ങൾക്ക് രാത്രികാല നിയന്ത്രണങ്ങൾ ആശ്വാസമാകും. രാത്രിയിൽ ജനങ്ങൾ സംഘടിക്കുന്നതു കുറയുന്നതോടെ, ആ സമയത്ത് ജോലി നോക്കേണ്ടവരുടെ എണ്ണം കുറയ്ക്കാൻ കഴിയും.
കേരളത്തിൽ കുറവാണെങ്കിലും മിക്ക സ്ഥലങ്ങളിലും വിവാഹങ്ങള്, ആഘോഷങ്ങൾ, സദ്യകള്, ഉത്സവങ്ങൾ എന്നിവ കൂടുതലായും നടക്കുന്നത് രാത്രിയിലാണ്. മാളുകളിലും പബ്ബുകളിലും മറ്റും ഏറ്റവും അധികം ജനം എത്തുന്നതും രാത്രികളിലാണ്.
മിക്ക പ്രതലങ്ങളിലും വൈറസിന് 6-8 മണിക്കൂറില് അധികം അതിജീലിക്കാനാകില്ല. കൂടുതല് സമയം മനുഷ്യ സംസര്ഗ്ഗം വരാതിരിക്കുന്നത് രോഗ വ്യാപന തോത് കുറയ്ക്കാൻ സഹായിക്കും.
അതായത് രാത്രികാല നിയന്ത്രണങ്ങൾ പൂര്ണ്ണ പരിഹാരമല്ല, എന്നിരുന്നാലും രോഗവ്യാപന തോത് കുറയ്ക്കാൻ അഭികാമ്യമായ ഒരു രീതിയാണ് അത്.
വാക്സിൻ എടുത്താലും കോവിഡ് വരുമോ? ലളിതമായ ഉത്തരം ‘അതെ’ എന്നാണ്.
വാക്സിനെടുത്തവർക്കും എന്തുകൊണ്ട് രോഗം വരുന്നു?
ഇന്നു നിലവിലുള്ള ഒരു കോവിഡ് വാക്സിനും 100% ഫലപ്രദമല്ല. ഇന്ത്യയിൽ ലഭ്യമായ വാക്സിനുകളുടെ ഫലപ്രാപ്തി 70% ആണ്. അതായത് വാക്സിനെടുക്കുന്ന 100 പേരില് 30 പേർക്ക് കോവിഡ് പിടിപെടാനുള്ള സാധ്യതയുണ്ട്.
രണ്ടു ഡോസും എടുത്തിട്ടില്ലാത്തവരില് 50%ല് കുറവ് മാത്രം രോഗപ്രതിരോധമാണ് സംജാതമാവുക. മാത്രമല്ല, രണ്ടാം ഡോസ് എടുത്തുകഴിഞ്ഞാലും പിന്നീടൊരു രണ്ടാഴ്ചയെങ്കിലും കഴിഞ്ഞുമാത്രമേ പൂണ്ണമായ പ്രതിരോധ ശേഷി ആര്ജ്ജിക്കുകയുള്ളു.
അപ്പോൾ വാക്സിന് കൊണ്ട് എന്താണ് പ്രയോജനം?
കാര്യങ്ങൾ ഇങ്ങനെയൊക്കെയാണെങ്കിലും വാക്സിനേഷൻ പരമപ്രധാനമാണ്. കാരണം:
☛ വാക്സിനേഷൻ വഴി 70% ആളുകള്ക്ക് രോഗപ്രതിരോധ ശേഷി ലഭിക്കുന്നു.
☛ വാക്സിനെടുത്തവര്ക്ക് രോഗം വന്നാൽ തന്നെയും അതു തീവ്രമായിരിക്കില്ല.
☛ വാക്സിനെടുത്തവര്ക്ക് രോഗം വന്നാലും ഗുരുതരമായ പ്രശ്നങ്ങൾ ഉണ്ടാകാനുള്ള സാധ്യത 5%ല് താഴെയാണ്.
☛ കോവിഡ് വാക്സിൻ എടുത്തവരിൽ കോവിഡ് മുലമുള്ള മരണ സാധ്യത ഒരു ശതമാനത്തിലും കുറവായിരിക്കും.
കരുതലാണ് പ്രതിവിധി, അതിനാൽ,
വാക്സിനെടുത്താലും മാസ്ക്, സാനിറ്റൈസര്, കൈകഴുകല്, ശാരീരിക അകലം എന്നിവ പാലിക്കണം.
വാക്സിന് എടുത്തവര്ക്ക് രോഗലക്ഷണങ്ങൾ ഇല്ലെങ്കിലും മറ്റുള്ളവര്ക്ക് രോഗം പകര്ത്താന് ശേഷിയുള്ളവരായിരിക്കും അവര്.
ധൈര്യം, ശാരീരികക്ഷമത എന്നീ അളവുകോലുകൾ വച്ചാണ് പ്രധാനമായും സ്ത്രീ-പുരുഷ തുല്യതയെ സമൂഹം അളക്കാറുള്ളത്. പൊതു നിരീക്ഷണത്തിൽ ഇവ രണ്ടും സ്ത്രീകളിൽ കുറവാണെന്നു കാണാം. അതിനാൽ പുരുഷൻ സ്ത്രീയെക്കാൾ അല്പം ഉയര്ന്ന പദവി അര്ഹിക്കുന്നുവെന്നും മറിച്ച് താരതമ്യേന കുറഞ്ഞ സാമൂഹ്യപദവിയിൽ തൃപ്തയാകേണ്ടവളാണ് സ്ത്രീയെന്നുമുള്ള ബോധം സമൂഹത്തിൽ പൊതുവെ അംഗീകരിക്കപ്പെട്ടതാണ്. ‘സ്ത്രീപുരുഷതുല്യത’ എന്നത് ഒരാശയം എന്നതിൽകവിഞ്ഞ് പ്രസക്തമായതല്ല എന്ന ധാരണ സമൂഹത്തിലെ ബഹുപൂരിപക്ഷം സ്ത്രീയും പുരുഷനും വച്ചുപുലര്ത്തുന്നു.
ഗ്രേറ്റ് ഇന്ത്യൻ കിച്ചൻ സിനിമയുടെ പോസ്റ്റർ
ഗ്യാസുകുറ്റി തനിച്ചുയര്ത്തുന്ന കരുത്തനായ പുരുഷനും പാമ്പിനു മുന്നിൽ പകച്ചു നില്ക്കുന്ന ഭീരുവായ സ്ത്രീയും ഈ പൊതുബോധത്തെ അരക്കിട്ടുറപ്പിക്കുന്ന ചിത്രങ്ങളാണ്. അവിടെയാണ് ചില പുരോഗമനക്കാരും ആക്ടിവിസ്റ്റുകളും പുരുഷനെകൊണ്ട് തുണിയലക്കിച്ചും പാത്രം കഴുകിച്ചും തറതുടപ്പിച്ചും തുല്യതയുണ്ടാക്കാനായി ഇറങ്ങിപുറപ്പെട്ടിട്ടുള്ളതെന്നോര്ക്കുമ്പോൾ ശരാശരി മലയാളിക്ക് ചിരി വരുന്നതിൽ അത്ഭുതപ്പെടാനില്ല. യഥാര്ത്ഥത്തിൽ ഇതൊക്കെ ചെയ്യാൻ പുരുഷനും സാധിക്കുന്നതാണ്. ഏറ്റവും നല്ല പാചകക്കാർ പുരുഷന്മാര് തന്നെയല്ലെ. ആയിരങ്ങൾ പങ്കെടുക്കുന്ന സദ്യവട്ടങ്ങളൊക്കെ ഒരുക്കുന്നത് പുരുഷന്മാരാണ്. അപ്പോൾ, പ്രകൃത്യാ തന്നെ സ്ത്രീയ്ക്ക് പുരുഷനേക്കാൾ കുറഞ്ഞകഴിവുകളാണുള്ളത് എന്ന് തീര്ച്ചായാക്കേണ്ടതല്ലേ.
ഈ വിഷയം ഒന്നുകൂടെപരിശോധിച്ചു നോക്കാം. ഒരു മനുഷ്യക്കുട്ടി, ജന്മനാൽ തന്നെ എന്തെല്ലാം കഴിവുകളുമായാണ് ജനിക്കുന്നത് എന്നറിയാൻ, മനുഷ്യസഹായമൊന്നുമില്ലാതെ, സ്വാഭാവികമായി വളര്ന്നു വന്ന കുട്ടികളെ പരിശോധിച്ചാൽ മതിയാകും. എന്തെങ്കിലും കാരണവശാൽ മാതാപിതാക്കളാൽ ഉപേക്ഷിക്കപ്പെടുകയും മനുഷ്യസാമീപ്യമില്ലാതെ കാട്ടിലോ മറ്റേതെങ്കിലും ഒറ്റപ്പെട്ട സ്ഥലത്തോ വളരേണ്ടിയും വന്ന കുട്ടികളെ പറ്റി കേട്ടിട്ടുണ്ടോ? ഫെരാൽ കുട്ടികൾ എന്നാണവർ അറിയപ്പെടുന്നത്. ഇത്തരം നിരവധി മനുഷ്യക്കുട്ടികളെ കണ്ടെത്തിയിട്ടുണ്ട്. ഇവരിലെല്ലാമുള്ള ചില പ്രത്യേകതകള് എന്തെന്നാൽ ഇവരാരും തന്നെ മനുഷ്യരുടെ സ്വാഭാവിക പെരുമാറ്റങ്ങൾ പ്രകടിപ്പിച്ചിട്ടില്ല എന്നതാണ്. ഇവര്ക്ക് മനുഷ്യന്റെ ഭാഷ മനസ്സിലാകുകയോ, അതു പഠിക്കാൻ സാധിക്കുകയോ ചെയ്തില്ല. മിക്ക കുട്ടികളും മൃഗങ്ങളെ പോലെ പച്ചമാംസം തിന്നുന്നവരും, കൈകൊണ്ട് എടുത്തു കഴിക്കാതെ നേരിട്ട് ഭക്ഷണം വായകൊണ്ട് കഴിക്കുന്നവരുമായിരുന്നു. മിക്കവരും നാലുകാലിൽ നടക്കുകയും, അവരെ സംരക്ഷിച്ചു എന്നു കരുതപ്പെടുന്ന മൃഗങ്ങളുടെ ശബ്ദം അനുകരിക്കുകയും ചെയ്തു. ഇവരിൽ മിക്ക കുട്ടികളും മനുഷ്യ സഹവാസം ഇഷ്ടപ്പെട്ടില്ല. മൃഗീയ ശീലങ്ങൾ മാത്രം പ്രകടിപ്പിച്ച ഇത്തരം കുട്ടികളിൽ ഭൂരിപക്ഷവും കണ്ടെത്തപ്പെട്ട് അധികം താമസിയാതെ മരണപ്പെടുകയാണുണ്ടായത്.
നായ്ക്കൾ വളര്ത്തിയത് എന്നു കരുതപ്പെടുന്ന ഒരു ഫെരാൽ കുട്ടി
ഫെറാൽ കുട്ടികളുടെ അവസ്ഥ പഠിച്ച ശാസ്ത്രജ്ഞര്, നമുക്കാര്ക്കും ഇഷ്ടപ്പെടാൻ കഴിയാത്ത ഒരു സത്യം വെളിപ്പെടുത്തി, മനുഷ്യക്കുട്ടികൾ നാം കരുതുന്നതുപോലെ മനുഷ്യഗുണങ്ങളുമായി ജനിക്കുന്നവരല്ല, മറിച്ച് മനുഷ്യസഹവാസവും മനുഷ്യ പരിശീലനവുമാണ് അവരെ നമ്മളെ പോലെ പെരുമാറുന്നവരാക്കി മാറ്റുന്നത്. അല്ലാത്തപക്ഷം അവര് സാധാരണ മൃഗങ്ങളിൽ നിന്നും തെല്ലും വ്യത്യസ്തരല്ല. അതായത് മനുഷ്യന്റെ എല്ലാ പെരുമാറ്റങ്ങളും അവൻ പഠിച്ചെടുക്കുന്നവയാണ്. അത് തലമുറകളായി കൈമാറി കൈമാറിയാണ് നാം ഇന്നത്തെ നിലയിൽ എത്തിയിട്ടുള്ളത്. ഈ കൈമാറ്റം ഇല്ലാതെ വന്നാൽ നാം മൃഗീയ വാസനകലിൽ തന്നെ ഒതുങ്ങും. ഇത്തരം കുട്ടികൾക്ക്, ഒരു നിശ്ചിത പ്രായം കഴിഞ്ഞാൽ ഭാഷയടക്കം പലതും പഠിച്ചെടുക്കാനുള്ള കഴിവ് നഷ്ടപ്പെടുകയും ചെയ്യും.
ജീവികൾ അവരുടെ പെരുമാറ്റങ്ങൾ എങ്ങനെ ആര്ജ്ജിക്കുന്നു എന്നതിനെ പറ്റി പഠനം നടത്തിയ രണ്ടു പ്രമുഖ മനഃശാസ്ത്രജ്ഞരാണ് ഇവാൻ പാവ്ലോവും ബി.എഫ്. സ്കിന്നറും. പെരുമാറ്റങ്ങളുടെ രൂപീകരണത്തെ കണ്ടീഷനിംഗ് എന്നാണ് ഇവര് വിളിച്ചത്. ഇവരുടെ സിദ്ധാന്തങ്ങൾ പ്രകാരം എല്ലാത്തരം പെരുമാറ്റങ്ങളും ചുറ്റുപാടിൽ നിന്നും പഠിച്ചെടുക്കുന്നവയാണ്. പെരുമാറ്റങ്ങളെ ബാഹ്യ പ്രതികരണങ്ങളിലൂടെ ശക്തിപ്പെടുത്താനോ ദുര്ബലപ്പെടുത്താനോ സാധിക്കുമെന്നതാണ് സ്കിന്നറുടെ സിദ്ധാന്തം പറയുന്നത്.
അതായത് പ്രോത്സാഹനങ്ങളും പാരിതോഷികങ്ങളും പെരുമാറ്റത്തെശക്തിപ്പെടുത്തുമ്പോൾ നിരുത്സാഹപ്പെടുത്തലുകളും ശിക്ഷകളും പെരുമാറ്റത്തെദുര്ബലപ്പെടുത്തുന്നു.
സ്കിന്നർ
ഇനി നമുക്ക് കാര്യത്തിലേക്ക് വരാം. ആൺകുട്ടികളിലും പെൺകുട്ടികളിലും കാണുന്ന എല്ലാ പെരുമാറ്റങ്ങളും ശേഷികളും അവര് പഠിച്ചെടുക്കുന്നതാണ്. അതിനു കിട്ടുന്ന പ്രോത്സാഹനങ്ങളും പാരിതോഷികങ്ങളുമാണ് അവയെ ശക്തിപ്പെടുത്തുന്നത്. നിരുത്സാഹപ്പെടുത്തലുകളും ശിക്ഷകളും പെരുമാറ്റങ്ങളെ ദുര്ബലപ്പെടുത്തുന്നു. ധൈര്യം, സാഹസികത, ശീരിക കഴിവുകൾ എന്നിവയെല്ലാം ആര്ജ്ജിച്ചെടുക്കേണ്ടതും ശക്തിപ്പെടുത്തേണ്ടതുമായ പെരുമാറ്റ ഗുണങ്ങളാണ്. ആൺകുട്ടികൾക്ക് ഇത്തരം സാഹര്യങ്ങളിൽ ഇടപഴകുന്നതിനും അവ ശീലിക്കുന്നതിനും അവസരം ലഭിക്കുമ്പോൾ പെൺകുട്ടികൾ ഇത്തരം സാഹചര്യങ്ങളിൽ നിന്നും അകറ്റി നിര്ത്തപ്പെടുന്നു. ധൈര്യം, സാഹസികത, ശാരീരികക്ഷമത എന്നിവ ആവശ്യമുള്ള പ്രവൃത്തികളിൽ ആൺകുട്ടികൾ നിര്ലോഭം ഏര്പ്പെടുകയും അതിനാവശ്യമായ പ്രോത്സാഹനം അവർക്ക് ലഭിക്കുകയും അങ്ങനെ അവരിൽ ആ ഗുണങ്ങൾ ശക്തിപ്പെടുകയും ചെയ്യുന്നു. എന്നാൽ ഒരു പെണകുട്ടി അത്തരം ഒരു പ്രവൃത്തിയിൽ ഏര്പ്പെട്ടാൽ ശകാരവും ശിക്ഷയുമാകുംഫലം.
പാമ്പിന്റെ കാര്യം തന്നെയെടുക്കാം. വീട്ടിലോ പരിസരത്തോ ഒരു വിഷപ്പാമ്പു വന്നാൽ സ്ത്രീകളും പെൺകുട്ടികളും വളരെ അകന്നുമാറി സുരക്ഷിതമായ സ്ഥലത്ത് നില്പുറപ്പിക്കും. പുരുഷന്മാര് അതിനെ കൈകാര്യം ചെയ്യാൻ പുറപ്പെടും. അത്തരം സാഹചര്യങ്ങളെ എങ്ങനെയാണ് മുതിര്ന്നവര് കൈകാര്യം ചെയ്യുന്നത് എന്നു കാണുന്നതിനും ഒരു പരിധിവരെ അത്തരം പ്രവൃത്തികളിൽ ഏര്പ്പെടുന്നതിനും ആൺകുട്ടികൾക്ക് അവരസം ലഭിക്കുന്നു. ഏതെങ്കിലും ഒരു പെൺകുട്ടി ആ സ്ഥലത്തേക്ക് കടന്നുചെല്ലാൻ ശ്രമിച്ചാൽ എന്താകും അവസ്ഥ, എല്ലാവരും കൂടി അവളെ വഴക്കുപറഞ്ഞ് ഓടിക്കുക തന്നെ ചെയ്യും.
ഇങ്ങനെ, ഭയപ്പെടുത്തുന്നതും സാഹസികത ആവശ്യപ്പെടുന്നതുമായസാഹചര്യങ്ങളോട് പ്രതികരിക്കാൻ ആൺകുട്ടികൾ പഠിക്കുകയും സ്വാഭാവികമായും പെൺകുട്ടികൾക്ക് അതിനുള്ളകഴിവ് നഷ്ടപ്പെടുകയും ചെയ്യുന്നു.
അതായത്, സ്വാഭാവികമായോ, ജനിതകമായതോ ആയ ഒരു പ്രകൃയയിലൂടെയല്ല, മറിച്ച് കണ്ടീഷനിംഗിന്റെ ഇരകാളായാണ് സ്ത്രീകൾസമൂഹത്തിൽ രണ്ടാം തരം പൗരന്മാരായി മാറ്റപ്പെടുന്നത്.
ആൺകുട്ടികൾക്കു ലഭിക്കുന്ന എല്ലാ അവസരങ്ങളും പ്രോത്സാഹനങ്ങളും പെൺകുട്ടികള്ക്കും ലഭിക്കുകയാണെങ്കിൽ അവരും ആൺകുട്ടികളോടൊപ്പം തന്നെ ഇത്തരം രംഗങ്ങളിലെല്ലാം ശോഭിക്കും എന്നതിന് എത്രയോ ഉദാഹരങ്ങള് നമുക്കു ചുറ്റും ഉണ്ട്. പാമ്പാട്ടിയുടെ മകൾ യാതൊരു പേടിയും കൂടാതെ പാമ്പിനെ പിടിച്ച് കൂടയ്ക്കുള്ളിലാക്കുന്നത് നാം കണ്ടിട്ടുള്ളതാണല്ലോ. (എല്ലാ പുരുഷന്മാരും പാമ്പിനെ നേരിടാൻ പുറപ്പെടാറുമില്ല.)
അപ്പോൾ പ്രിയ മാതാപിതാക്കളെ, പ്രിയ സമൂഹമേ, പെൺകുട്ടികളോട് നിങ്ങള് അറിഞ്ഞോ അറിയാതെയോ കാണിക്കുന്ന അവഗണകളും വേര്തിരിവുകളുമാണ് അവരുടെ കഴിവുകളെ കെടുത്തിക്കളയുന്നത്. മരത്തിൽ കയറുമ്പോഴും മൈതാനത്ത് കളിക്കുമ്പോഴും ഒച്ചവയ്ക്കുമ്പോഴും ചിരിക്കുമ്പോഴും പെൺകുട്ടികൾക്കു മാത്രമായി നിങ്ങൾ നൽകുന്ന വിലക്കുകൾ, ഫെരാൽ കുട്ടികളെ പോലെ അവരെ ദുർബലരാക്കുന്നു. പാത്രം കഴുകുക മുറ്റമടിക്കുക തുണികഴുകുക തുടങ്ങിയ ദിനചൈര്യകളിൽ നിന്നും ആൺകുട്ടികളെ ഒഴിവാക്കുന്നതിലൂടെ അവരുടെ ആണധികാരത്തെ നിങ്ങൾ വളര്ത്തിയെടുക്കുന്നു. ഈ ആണധികാരമാണ് വയലൻസിലേക്ക് കടക്കാനുള്ള ലൈസൻസായി മാറുന്നത്. തുല്യത എന്നത് ഔദാര്യമല്ല, അവകാശവും സ്വാഭാവിക നീതിയുമാകുന്നു.
കണ്ടീഷനിംഗ് സിദ്ധാന്തങ്ങള് മറ്റൊരു കാര്യം കൂടി പറയുന്നുണ്ട്, ആര്ജ്ജിച്ചെടുത്ത ഏതു പെരുമാറ്റത്തെയും ഇല്ലാതാക്കുവാനും സാധിക്കും എന്നതാണ് അത്. കൗണ്ടര് കണ്ടീഷനിംഗ് എന്നാണതിനു പറയുക. ആണത്ത അധികാരം ശീലിച്ച ഒരു വ്യക്തിക്ക് ക്രമേണ തന്റെ പെരുമാറ്റം വ്യത്യാസപ്പെടുത്താനും തുല്യതയോടെ പെരുമാറാനും സാധിക്കും. അബലയെന്നു സ്വയം ധരിച്ചു വച്ചിരിക്കുന്ന സ്ത്രീകൾക്ക്, ബലശീലങ്ങള് ആര്ജ്ജിച്ചെടുക്കാനും സ്വതന്ത്രയാകാനും പരിശീലനത്തിലൂടെ സാധിക്കും. അതിനായി സമൂഹം മൊത്തത്തിൽ അതിന്റെ മനോഭാവം മാറ്റുകയും അതിനായുള്ള ചര്ച്ചകൾ നിരന്തരം ഉയര്ത്തേണ്ടതുമുണ്ട്. അവിടെയാണ് ഗ്രേറ്റ് ഇന്ത്യൻ കിച്ചൺ പോലെയുള്ള സിനിമകളുടെ പ്രസക്തി. ശക്തമായ കൗണ്ടര് കണ്ടീഷനിംഗ് ഉപാധകളാണവ.
————————————–
പിൻ കുറിപ്പ്
പാമ്പിനെ ആരും കൊല്ലേണ്ട, വനം വകുപ്പിനെ അറിയിച്ചാൽ അവര് വന്ന് പിടിച്ചു കൊണ്ടു പോയ്ക്കോളും.
2020 ഒക്ടോബറിൽ ദൂരദർശിനിയിലൂടെ വീക്ഷിക്കാൻ കഴിയുന്ന ചൊവ്വയുടെ ദൃശ്യം
നിങ്ങളിൽ എത്രപേർ ഗ്രഹങ്ങളെ കണ്ടിട്ടുണ്ട്? ടെലസ്കോപ്പിന്റെ സഹായമില്ലാതെ, നേരിട്ട് ഗ്രഹങ്ങളെ കാണാനാകുമോ? ആകാശത്തു കാണുന്ന ഒരു വസ്തു ഗ്രഹമാണെന്ന് എങ്ങനെ തിരിച്ചറിയും? നിങ്ങളുടെ സംശയങ്ങള് നേരിൽകണ്ട് പരിഹരിക്കാൻ കഴിയുന്ന സമയമാണ് ഈ മാസം.
സൗരയൂഥത്തിലുള്ള ഗ്രഹങ്ങളിൽ നാം ജീവിക്കുന്ന ഭൂമി ഒഴികെ മറ്റെല്ലാ ഗ്രഹങ്ങളെയും ആകാശത്തായിട്ടാണ് കാണാൻ കഴിയുന്നത്. ഇവയിൽ ബുധൻ, ശുക്രൻ, ചൊവ്വ, വ്യാഴം, ശനി എന്നീ 5 അഞ്ചു ഗ്രഹങ്ങളെ നഗ്നനേത്രങ്ങൾ കൊണ്ടു കാണാൻ സാധിക്കും. അപൂര്വ്വം അവസരങ്ങളിൽ മാത്രമേ ഈ അഞ്ചുഗ്രഹങ്ങളെയും ആകാശത്ത് ഒരേ സമയം കാണാൻ സാധിക്കൂ.
ഇവയിൽ മൂന്നു ഗ്രഹങ്ങളെ ഒരേസമയം കാണാനാകുന്ന ഒരു നല്ല അവസരമാണ് ഇപ്പോൾ. ഇനിയുള്ള കുറച്ച് ആഴ്ചകളിൽ സന്ധ്യാകാശത്ത് ചൊവ്വ, ശനി, വ്യാഴം എന്നീ ഗ്രഹങ്ങളെകാണാൻ സാധിക്കും.
ഗ്രഹങ്ങളെ എങ്ങനെ തിരിച്ചറിയാം?
ആകാശത്തു നാം കാണുന്നവയിൽ നക്ഷത്രമെന്നു തോന്നിക്കുന്ന എല്ലാ വസ്തുക്കളും നക്ഷത്രങ്ങൾ തന്നെയായിരിക്കണം എന്നില്ല. വളരെ തിളക്കമേറിയ, നക്ഷത്രസമാനമായ വസ്തുക്കളിൽ ചിലതെങ്കിലും ഗ്രഹങ്ങളാണ്. ഗ്രഹങ്ങള് സാധാരണ നക്ഷത്രങ്ങളെ പോലെ മിന്നിമിന്നി തിളങ്ങാറില്ല. ഒരു മൊബൈൽ ക്യാമറയിൽ ആകാശത്തിന്റെ ഫോട്ടോ എടുത്തുനോക്കൂ, നന്നായി പതിഞ്ഞിട്ടുള്ള നക്ഷത്രസമാനമായ വസ്തു ഒരു ഗ്രഹമായിരിക്കും.
ഈ മാസം നമുക്കു കാണാൻ കഴിയുന്ന ഗ്രഹങ്ങളെ എങ്ങനെ തിരിച്ചറിയാം എന്നു നോക്കാം. സന്ധ്യയ്ക്ക് നേരെ കിഴക്ക് ചക്രവാളത്തിനു മുകളിലായി വെട്ടിത്തിളങ്ങുന്ന ഇളം ചുവപ്പ് നിറമുള്ള വസ്തുവിനെ കാണാം. അതു ചൊവ്വയാണ്. ചൊവ്വയുടെ ഉപരിതലത്തിലെ ഇരുമ്പ് ഓക്സൈഡിനാൽ സമൃദ്ധമായ ചുമന്ന മണ്ണാണ് അതിനു ചുമപ്പു നിറം സമ്മാനിക്കുന്നത്. ചൊവ്വയുടെ സ്ഥാനം ഇപ്പോൾ ഭൂമിയോട് വളരെ അടുത്താണ്. അതിനാൽ ഇപ്പോൾ കാണുന്ന ചൊവ്വയ്ക്ക് സാധാരണയിലും കൂടുതൽ വലുപ്പം തോന്നിക്കും. ഇനിയും 15 വർഷങ്ങൾക്കുശേഷമായിരിക്കും ചൊവ്വ വീണ്ടും ഭൂമിയോട് ഇത്രയും അടുത്തു വരിക.
ഒക്ടോബർമാസം സന്ധ്യയ്ക്ക് കിഴക്കേ ചക്രവാളത്തിൽ ദൃശ്യമാകുന്ന ചൊവ്വ.
രാത്രി 7.30നു നോക്കിയാൽ കിഴക്കേ ചക്രവാളത്തിൽ ഏതാണ്ട് 20° മുകളിലായായി ആയിരിക്കും ചൊവ്വയുടെ സ്ഥാനം. സാധാരണ നിലയിൽ, തിളക്കത്തിൽ വ്യാഴത്തിന്റെ പിന്നിലായാണ് ചൊവ്വയുടെ സ്ഥാനം. എന്നാൽ, ഈ ഒക്ടോബറിൽ വ്യാഴത്തെ പിന്നിലാക്കിക്കൊണ്ട് ചൊവ്വ തിളക്കത്തിൽ നാലാമത്തെ ആകാശഗോളമായി മാറും. സൂര്യൻ, ചന്ദ്രൻ, ശുക്രൻ എന്നിവയാണ് തിളക്കത്തിൽ ഒന്നും രണ്ടും മൂന്നും സ്ഥാനക്കാര്. ഒക്ടോബര് 13ന് ചന്ദ്രനും സൂര്യനും ഭൂമിക്ക് ഇരുഭാഗത്തുമായി നേര് വിപരീതദിശയിലായി എത്തിച്ചേരും. ഇതുമൂലം സൂര്യപ്രകാശം പതിക്കുന്ന ഭാഗം മുഴുവനായി നമുക്കു കാണാനാകുകയും ചൊവ്വ കൂടുതൽ തിളക്കമുള്ളതായി അനുഭവപ്പെടുകയും ചെയ്യും.
ചൊവ്വയെ ഇത്രയും വലുപ്പത്തിൽ കാണുന്നതിന് ഇനി 15 വർഷം കാത്തിരിക്കണം.
സന്ധ്യയ്ക്ക് തലക്കുമുകളിൽ അല്പം തെക്കായി തിളക്കമുള്ള രണ്ടു വസ്തുക്കളെ കാണാം. (ആഭാഗത്ത് അതിലും തിളക്കമുള്ള നക്ഷത്രസമാനമായ വസ്തുക്കൾ ഇല്ല) അതിൽ ഏറ്റവും തിളക്കമുള്ള വസ്തു ഗ്രഹഭീമനായ വ്യാഴവും അതിനടുത്ത് (ഇടതുഭാഗത്തായി) തിളക്കത്തിൽ രണ്ടാമത്തേതായി കാണുന്ന വസ്തു ശനിയും.
2020 ഒക്ടോബറിൽ തെക്കേ ആകാശത്ത് ദൃശ്യമാകുന്ന വ്യാഴവും ശനിയും
വ്യാഴം ശനി എന്നിവ സ്ഥിതിചെയ്യുന്ന ഭാഗത്ത് അല്പനേരം നോക്കി നിന്നാൽ, ചിത്രത്തിൽ കാണുന്നതുപോലെ തിളക്കമുള്ള ചില നക്ഷത്രങ്ങളെ കാണാം. ധനു എന്ന നക്ഷത്രരാശിയാണത്. നിരന്തരം നിരീക്ഷിക്കുകയാണെങ്കിൽ വ്യാഴവും ശനിയും ധനുവിൽ നിന്നും മെല്ലെ മെല്ലെ അകന്നുപോകുന്നതായി കാണാം, അഥവാ ഈ രണ്ടു വസ്തുക്കളും നക്ഷത്രങ്ങള്ക്കിടയിലൂടെ സഞ്ചരിക്കുന്നതായാണ് തോന്നുക. എന്നാൽ വ്യത്യസ്ത വേഗതയിൽ സഞ്ചരിക്കുന്നതിനാൽ ഡിസംബര് ആകുമ്പോഴേക്കും വ്യാഴവും ശനിയും തൊട്ടടുത്തു വരികയും പിന്നീട് വ്യാഴം ശനിയെ പിന്നിലാക്കി മുന്നോട്ടു പോകുകയും ചെയ്യും. ഇങ്ങനെ നക്ഷത്രങ്ങളെ അപേക്ഷിച്ച് സ്ഥാനമാറ്റം വരുന്ന വസ്തുക്കളെയാണ് പൗരാണികർ ഗ്രഹങ്ങള് എന്നു വിളിച്ചത്. സൂര്യനു ചുറ്റും പരിക്രമണം ചെയ്യുന്നതുകൊണ്ടാണ് ഗ്രഹങ്ങൾ നക്ഷത്രങ്ങൾക്കിടയുലൂടെ സഞ്ചരിക്കുന്നതായി കാണപ്പെടുന്നത്.
പുലര്ച്ചെ കിഴക്കു ദിശയിൽ കാണുന്ന ഏറ്റവും തിളക്കമേറിയ നക്ഷത്രസമാനമായ വസ്തുവാണ് ശുക്രൻ. ശുക്രനെ പുലര്ച്ചെയോ സന്ധ്യയ്ക്കോ മാത്രമേ കാണാൻ സാധിക്കൂ. അതിനാൽ അതിന് പ്രഭാത നക്ഷത്രം എന്നും സന്ധ്യാ നക്ഷത്രം എന്നും പേരുകളുണ്ട്. ഭൂമിയുടെ പരിക്രമണ പഥത്തിനുള്ളിലായാണ് ശുക്രന്റെ പരിക്രമണ പഥം എന്നതിനാൽ ശുക്രനെ എപ്പോഴും സൂര്യന്റെ സമീപത്തായി മാത്രമേ കാണാൻ സാധിക്കൂ. അതിനാലാണ് പ്രഭാതത്തിലും സന്ധ്യയ്ക്കും മാത്രം ശുക്രനെ കാണാൻ സാധിക്കുന്നത്. പകൽ സൂര്യനടുത്തുണ്ടായാലും സൂര്യപ്രകാശത്തിന്റെ തിളക്കത്തിൽ ശുക്രനെ നമുക്ക് തിരിച്ചറിയാൻ സാധിക്കില്ല.
നിയോവൈസ് (NEOWISE) എന്നൊരു വാൽനക്ഷത്രം(Comet) 2020 ജൂലൈമാസത്തിൽ വന്നുപോയത് അറിഞ്ഞിരിക്കുമല്ലോ. ഇൻഫ്രാറെഡ് കിരണങ്ങൾ ഉപയോഗിച്ച് പ്രവർത്തിക്കുന്ന വൈസ് എന്ന ബഹിരാകാശ ദൂരദർശിനി ഉപയോഗിച്ച് 2020മാര്ച്ച് 27നാണ് ഈ വാൽനക്ഷത്രത്തെ കണ്ടെത്തിയത്. C/2020 F3 എന്നാണ് ഇതിന്റെ ശാസ്ത്രനാമം. 1997-ൽ പ്രത്യക്ഷപ്പെട്ട ഹെയ്ൽ ബോപ്പ് എന്ന വാൽനക്ഷത്രത്തിനു ശേഷം നഗ്ന നേത്രങ്ങള് കൊണ്ടു നമുക്കു കാണാൻ കഴിഞ്ഞ വാൽ നക്ഷത്രം എന്ന പ്രത്യേകതയും നിയോവൈസിനുണ്ട്. ജൂലൈ 23നാണ് ഇത് ഭൂമിയോട് ഏറ്റവും അടുത്തുവന്നത്.
ഹെയ്ൽ ബോപ്പ് വാൽനക്ഷത്രം
എന്താണ് വാൽനക്ഷത്രം അഥവാ ധൂമകേതു
വാൽനക്ഷത്രം എന്നു വിളിക്കപ്പെടുന്നെങ്കിലും ആൾ ഒരു നക്ഷത്രമൊന്നുമല്ല. സൂര്യനെ പ്രദക്ഷിണം ചെയ്യുന്നതിനിടയിൽ നീണ്ടവാലും അന്തരീക്ഷവും രൂപപ്പെടുന്ന സൗരയൂഥ വസ്തുക്കളാണിവ. സാധാരണ നിലയിൽ തണുത്തുറഞ്ഞ അവസ്ഥയിലായിരിക്കുന്ന ഇവ സൂര്യനോട് അടുക്കുമ്പോൾ ബാഷ്പീകരിക്കപ്പെട്ടാണ് നീണ്ട വാലും അന്തരീക്ഷവും രൂപപ്പെടുന്നത്. സൂര്യപ്രകാശത്തെ പ്രതിഫലിപ്പിക്കുന്നതുകൊണ്ടാണ് ഇവ നമുക്കു ദൃശ്യമാകുന്നത്. ധൂമകേതു എന്ന പേരും ഇതിനുണ്ട്.
ധൂമകേതുക്കൾ എവിടെനിന്നു വരുന്നു
നെപ്റ്റ്യൂണിനും പ്ലൂട്ടോയ്ക്കുമൊക്കെ വെളിയിലായി, സൗരയൂഥത്തിന്റ ഭാഗമായ കോടിക്കണക്കിനു ചെറുവസ്തുക്കളുണ്ട്. എന്തെങ്കിലും കാരണത്താൽ ഇവയുടെ പരിക്രമണ പഥത്തിന് മാറ്റം വന്നാൽ അവ സൂര്യനിലേക്ക് പതിക്കുന്നതിനു കാരണമാകും. മിക്കവയും സൂര്യനിൽ പതിച്ച് നശിച്ചു പോവുകയാണ് പതിവ്. എന്നാൽ സൂര്യനിലേക്കുള്ള വീഴ്ചയ്ക്കിടയിൽ ഭീമൻ ഗ്രഹങ്ങളായ വ്യാഴത്തിന്റെയോ ശനിയുടേയോ ആകര്ഷണ വലയത്തിൽ പെട്ടുപോയാൽ അതിന്റെ പാതയ്ക്ക് മാറ്റമുണ്ടാവുകയും സൂര്യനിൽ പതിക്കാതെ, ദീര്ഘവൃത്താകാരമായ പാതയിൽ അവ സൂര്യനെ ചുറ്റാൻ ആരംഭിക്കുകയും ചെയ്യുന്നു.
പ്ലൂട്ടോയ്ക്കുവെളിയിൽ വളരെ അകലത്തിൽ വ്യാപിച്ചുകിടക്കുന്ന കോടിക്കണക്കായ ചെറുഗ്രഹപഥാര്ത്ഥങ്ങളുടെ കൂട്ടമാണ് ഓർട്ട് മേഘം (Oort Cloud). ഓർട്ട് മേഘത്തിൽ നിന്നെത്തുന്ന ധൂമകേതുക്കൾ സൂര്യനെ ദീര്ഘകാലം കൊണ്ട് പരിക്രമണം ചെയ്യുന്നവയാണ്. ഇവയുടെ പരിക്രമണകാലം 200 വര്ഷം മുതൽ ആയിരക്കണക്കിനു വർഷങ്ങള് വരെയാകാം. നെപ്ട്യൂണിനു വെളിയിൽ വലയാകാരത്തിൽ കാണപ്പെടുന്ന ഛിന്നഗ്രഹങ്ങളുടെ കൂട്ടമാണ് കുയ്പ്പർ ബെൽറ്റ് (Kuiper belt). കുയ്പ്പർ ബെൽറ്റിൽ നിന്നും ധൂമകേതുക്കൾ എത്താറുണ്ട്. ഇവ ഹ്രസ്വകാല ധൂമകേതുക്കളണ്. ഇവയുടെ പരിക്രമണകാലം 200 വര്ഷത്തിലും കുറവായിരിക്കും.
ധൂമകേതുവിന്റെ ഘടന
ന്യൂക്ലിയസ്സ്, കോമ, ഹൈഡ്രജൻ കവചം, വാലുകൾ എന്നിവയാണ് ധൂമകേതുവിന്റെ പ്രധാന ഭാഗങ്ങള്.
a) ന്യൂക്ലിയസ് (കാമ്പ്), b) കോമ, c) വാതകവാൽ d) ധൂളീവാൽ, e) ഹാഡ്രജൻ കവചം f) ധൂമകേതുവിന്റെ സഞ്ചാരദിശ g) സൂര്യനിലേക്കുള്ള ദിശ.
ന്യൂക്ലിയസ്സ്
തണുത്തുറഞ്ഞു ഖരാവസ്ഥയിലുള്ള കേന്ദ്രഭാഗമാണ് ന്യൂക്ലിയസ്സ്. ക്രമരഹിതമായ ആകൃതിയായിരിക്കും ഇതിന്. പാറ, പൊടി എന്നിവയുടെയും ഘനീഭവിച്ച ജലം, കാർബൺ ഡൈ ഓക്സൈഡ്, കാർബൺ മോണോക്സൈഡ്, മീഥെയ്ൻ, അമോണിയ എന്നിവയുടെയും ഒരു മിശ്രിതമാണ് ധൂമകേതുവിന്റെ ന്യൂക്ലിയസ്സ്. ഇവകൂടാതെ നിരവധി ഓര്ഗാനിക് സംയുക്തങ്ങളും ധൂമകേതു ന്യൂക്ലിയസ്സുകളിൽ കണ്ടെത്തിയിട്ടുണ്ട്.
കോമ
സൂര്യസമീപമെത്തുന്ന ധൂമകേതുവിൽ സൂര്യവികിരണങ്ങളും സൗരവാതവും പതിക്കുന്നതുമൂലം ഉപരിതലത്തിലെ പൊടിയും ഹിമകണങ്ങളും ബാഷ്പീകരിക്കപ്പെട്ട് സാന്ദ്രത കുറഞ്ഞതും ബൃഹത്തായതുമായ ഒരു അന്തരീക്ഷം രൂപപ്പെടുന്നു. ഇതാണ് കോമ. ഇതിന്റെ 90% ജലബാഷ്പമായിരിക്കും. കോമയ്ക്കു ചുറ്റും ഹൈഡ്രജൻ ആറ്റങ്ങളുടെ അതി ബൃഹത്തായ ഒരു കവചം രൂപപ്പെടാറുണ്ട്.
വാലുകൾ
സൗരവികിരണം മൂലം ബാഷ്പീകരിക്കപ്പെടുന്ന വാതകങ്ങളും പൊടിയും (ധൂളികൾ) വികിരണങ്ങളുടെയും സൗരവാതത്തിന്റെയും സമ്മര്ദ്ദത്താൽ പുറത്തേക്ക് തെറിച്ച് പ്രത്യേകം വാലുകൾ രൂപപ്പെടും. സൂര്യനോട് അടുക്കുംതോറും വാലിന്റെ നീളം കൂടിവരും.
വാതകവാൽ:
സൗരവാതം എന്ന, സൂര്യനിൽനിന്നുള്ള ചാർജ്ജിത കണങ്ങളുടെ പ്രവാഹത്തിൽ പെട്ട് കോമയിലെ വാതകഭാഗങ്ങൾ പിന്നിലേക്ക് തെറിക്കുന്നു. അങ്ങനെ രൂപപ്പെടുന്ന വാലാണ് വാതകവാൽ. ഇത് സൂര്യന്റെ എതിർ ദിശയിൽ ആയിരിക്കും.
ധൂളീവാൽ:
യാത്രയ്ക്കിടയിൽ ധൂമകേതുവിന്റെ അന്തരീക്ഷത്തിൽ നിന്നും പുറന്തള്ളപ്പെടുന്ന പൊടിപടലം ധൂമകേതുവിന്റെ പരിക്രമണപാതയിൽ രൂപപ്പെടുത്തുന്ന വാലാണ് ധൂളീവാൽ. ഇത് പരിക്രമണ പാതയിലേക്ക് വളഞ്ഞിട്ടായിരിക്കും കാണപ്പെടുക.
ധൂമകേതു ചരിത്രത്തില്
1066-ൽ പ്രത്യക്ഷപ്പെട്ട ഹാലി ധൂമകേതുവിനെ ചിത്രീകരിക്കുന്ന ബായൂ റ്റാപ്പസ്റ്റ്രി
വളരെ പുരാതന കാലം മുതലേ മനുഷ്യൻ ധൂമകേതുക്കളെ തിരിച്ചറിഞ്ഞിരുന്നു. 16-ാം നൂറ്റാണ്ടുവരെ ഇവയെ ദുഃശകുനങ്ങളായാണ് കണ്ടിരുന്നത്. എ.ഡി. 1066-ൽ പ്രത്യക്ഷപ്പെട്ട ഹാലിയുടെ വാല്നക്ഷത്രത്തെ ഹെയ്സ്റ്റിംഗ്സ് യുദ്ധത്തിലെ ഹരോൾഡ് രാജാവിന്റെ മരണത്തിന്റെയും നോർമന്റെ വിജയത്തിന്റെയും സൂചനയായി ചിത്രീകരിച്ചുകൊണ്ടു് തുണിയിൽ തീര്ത്ത ബായോ ടേപിസ്ട്രി എന്ന ചിത്രീകരണം പ്രസിദ്ധമാണ്.
ധൂമകേതുക്കളെ പ്രത്യേകതരം ഗ്രഹങ്ങളായി ബി.സി. 6-ാം നൂറ്റാണ്ടിലെ പൈതഗോറസും മഴവില്ലും മേഘങ്ങളും പോലെയുള്ള ഒരു പ്രതിഭാസമായി ബി.സി. 4-ാം നൂറ്റാണ്ടിലെ അരിസ്റ്റോട്ടിലും കരുതി. 16-ാം നൂറ്റാണ്ടുവരെ അരിസ്റ്റോട്ടിലിന്റെ ചിന്തകളാണ് പ്രബലമായി നിലനിന്നത്.
1577-ൽ പ്രത്യക്ഷപ്പെട്ട ബൃഹദ് ധൂമകേതുവിനെ പ്രമുഖ ജ്യോതിശാസ്ത്രജ്ഞനായിരുന്ന ടൈക്കോ ബ്രാഹെ ശാസ്ത്രീയമായി നിരീക്ഷിക്കുകയും അത് ഭൂമിയുടെ അന്തരീക്ഷത്തിനു വെളിയിൽനിന്നുള്ളതാണെന്നു കണ്ടെത്തുകയും ചെയ്തു. 18-ാം നൂറ്റാണ്ടോടെ ഐസക് ന്യൂട്ടൻ, എഡ്മണ്ട് ഹാലി, ഇമ്മാനുവേൽ കാന്റ് തുടങ്ങിയവരുടെ പഠനങ്ങളാണ് ധൂമകേതുക്കളെ പറ്റി ശാസ്ത്രീയ വിശദീകരണങ്ങൾ നൽകിയത്.
ഹാലിയുടെ വാൽനക്ഷത്രം
14-ാം നൂറ്റാണ്ടുമുതൽ ദൃശ്യമായ വാൽനക്ഷത്രങ്ങളെ പറ്റി ഇംഗ്ലീഷ് ജ്യോതിശാസ്ത്രജ്ഞനായിരുന്ന എഡ്മണ്ട് ഹാലി 1705ൽ പഠിക്കുകയും അവയുടെ പഥം ന്യൂട്ടന്റെ ഗുരുത്വാകര്ഷണ നിയമവുമായി ബന്ധപ്പെടുത്തി പരിശോധിക്കുകയും ചെയ്തു. 1531, 1607, 1682 എന്നീ വര്ഷങ്ങളിൽ പ്രത്യക്ഷപ്പെട്ടത് ഒരേ വാൽനക്ഷത്രമാണെന്നും ഇത് 1758ലോ 1759ലോ വീണ്ടും പ്രത്യക്ഷപ്പെടുമെന്നും അദ്ദേഹം പ്രവചിച്ചു. ഹാലി പ്രവചിച്ചതു പോലെ ഈ വാൽ നക്ഷത്രം 1759-ൽ പ്രത്യക്ഷപ്പെട്ടു. ഹാലിയുടെ വാൽനക്ഷത്രം എന്നാണ് ഇത് ഇപ്പോൾ അറിയപ്പെടുന്നത്. 75-76 വര്ഷം കൊണ്ട് ഒരു പരിക്രമണം പൂര്ത്തിയാക്കുന്ന ഹ്രസ്വകാല വാൽനക്ഷത്രമായ ഇത് 1986ലാണ് അവസാനമായി പ്രത്യക്ഷപ്പെട്ടത്, ഇനി വരിക 2061ലും.
ധൂമകേതുക്കളുടെ പ്രഭാവങ്ങൾ
ധൂമകേതുക്കളുടെ പാതയിൽ ഉപേക്ഷിക്കപ്പെടുന്ന ധൂളീ പടലങ്ങള് ഭൂമിയിൽ ഉല്ക്കാവര്ഷത്തിനു കാരണമാകുന്നു. ഭൂമിയിൽ ജീവനുകാരണമായ പദാർത്ഥങ്ങള് ധൂമകേതുക്കളുടെ സംഭാവനയാണെന്ന് ഒരു വിഭാഗം ശാസ്ത്രജ്ഞർ കരുതുന്നു. ധൂമകേതുക്കളിൽ ധാരാളമായി കണ്ടുവരുന്ന ഓര്ഗാനിക് വസ്തുക്കളുടെ സാന്നിദ്ധ്യമാണ് ഇങ്ങനെ കരുതാൻ കാരണം. ഭൂമിയുടെ ഉൽപത്തിക്കുശേഷം ധൂമകേതുക്കളുമായുണ്ടായ കൂട്ടിയിടിയിലാകാം ഭൂമിയിൽ ഇത്രമാത്രം ജലം എത്തപ്പെട്ടതെന്നു വിശ്വസിക്കുന്നവരും ഉണ്ട്.
2020 ആഗസ്ത് 25 ലെ മാതൃഭൂമി ദിനപത്രത്തിന്റെ വിദ്യ സപ്ലിമെന്റിൽ പ്രസിദ്ധീകരിച്ചത്.