എന്‍. സാനു

മലയാളം ബ്ലോഗ്


വൃത്തത്തിന്റെ കോണളവ് 360° ആയതിന്റെ കഥ

നമുക്ക് പരിചിതമായ നിരവധി അളവുകളും യൂണിറ്റുകളുമുണ്ടല്ലോ. ഉദാഹരണത്തിന് നീളം അളക്കുന്നതിനുള്ള യുണിറ്റാണ് മീറ്റർ; പിണ്ഡത്തിന്റെ യൂണിറ്റാണ് കിലോഗ്രാം.ഇ ങ്ങനയുള്ള അടിസ്ഥാന യൂണിറ്റുകളെ 10, 100, 1000 എന്നിങ്ങനെ പത്തിന്റെ ഗുണിതങ്ങൾ കൊണ്ട് ഹരിച്ചോ ഗുണിച്ചോ അതിന്റെ തന്നെ ചെറുതും വലുതുമായ മറ്റു യൂണിറ്റുകളും ഉണ്ടാക്കാറുണ്ട്. ഉദാഹരണത്തിന് 1000 മീറ്ററാണല്ലോ ഒരു കിലോ മീറ്റർ. എന്നാൽ 10, 100, 1000 എന്നിങ്ങനെയുള്ള, 10 ആധാരമായ സംഖ്യയ്ക്ക് പകരം ഒരു വൃത്തത്തിന്റെ ഡിഗ്രി അളവ് 360 ആയത് എന്തുകൊണ്ടാണ്?

പത്തിന്റെ വർഗ്ഗങ്ങൾക്കു പകരം 60-ന്റെ ഗുണിതങ്ങളായാണ് മറ്റു ചില അളവുകളുടെ യുണിറ്റുകൾ നിർമ്മിച്ചിരിക്കുന്നത്. ഉദാഹരണത്തിന് 60 സെക്കന്റാണ് ഒരു മിനിറ്റ്. 60 മിനിറ്റാണ് ഒരു മണിക്കൂർ. വൃത്തത്തിന്റെ അളവ് 360°ആണ് ഒരു വൃത്തത്തിന്റെ കോണളവ്. വൃത്തത്തിന്റെ അളവ് 360°ആയതിനു പിന്നിലെ കാരണത്തെപറ്റിയാണ് നമ്മളിവിടെ പറയാൻ പോകുന്നത്.

വൃത്തത്തെ ഡിഗ്രിയിൽ അളന്ന രീതി

സാധാരണ അളവുരീതികളിൽനിന്നും കുറച്ചു വ്യത്യസ്തമാണ് വൃത്തത്തിന്റെ ഡിഗ്രി അളവ്. ഒരു വൃത്തത്തിന്റെ രണ്ട് ആരങ്ങൾ അതിന്റെ കേന്ദ്രത്തിലുണ്ടാക്കുന്ന കോണിനെ ആസ്പദമാക്കി വൃത്തത്തിന്റെ അളവ് കണക്കാക്കുന്ന രീതിയാണിത്. ഒരു വൃത്തത്തിന്റെ രണ്ട് ആരങ്ങൾ ഉൾക്കൊള്ളുന്ന ഭാഗം ആകെ വൃത്തത്തിന്റെ എത്രയാണ് എന്ന് പറയാനാകും. ഉദാഹരണത്തിന് നേരെ ഏതിരായിവരുന്ന രണ്ട് ആരങ്ങളുപയോഗിച്ച് വൃത്തത്തെ രണ്ട് അർദ്ധവൃത്തങ്ങളാക്കാം. ഓരോ ഭാഗവും ആകെ വൃത്തത്തിന്റെ പകുതി ആയിരിക്കും. പരസ്പരം ലംബങ്ങളായ രണ്ട് ആരങ്ങൾ ചേർന്നാൽ ആകെ വൃത്തത്തിന്റെ കാൽഭാഗം കിട്ടുമല്ലോ.

പ്രാചീന ഗണിതജ്ഞർ ഒരു വൃത്തത്തെ ഇപ്രകാരം അതിന്റെ ആരങ്ങളുപയോഗിച്ച് 360 തുല്യഭാഗങ്ങളായി വിഭജിച്ച് അതിലെ ഒരോ ഭാഗത്തെയും ഒരു ഡിഗ്രി (1°) എന്നു വിളിച്ചു. അങ്ങനെ ആകെ വൃത്തത്തിന്റെ അളവ് 360° ആയി.

എന്തുകൊണ്ട് 360?

വൃത്തത്തിന്റെ അളവ് 360 ഡിഗ്രിയായായി കണക്കാക്കിയതിനെ സംബന്ധിച്ച് രണ്ടുതരത്തിലുള്ള വാദങ്ങളാണുള്ളത്.

1. ജ്യോതിശാസ്ത്ര വാദം

ജ്യോതിശാസ്ത്രവുമായി ബന്ധപ്പെട്ടതാണ് ആദ്യത്തെ വാദം. ഭൂമി സൂര്യനെ ചുറ്റിക്കറങ്ങുമ്പോൾ, ഭൂമിയിൽ നിന്നു നിരീക്ഷിക്കുന്ന നമുക്ക് ഭൂമി സഞ്ചരിക്കുന്നതായല്ല മറിച്ച് സൂര്യൻ ആകാശത്തിലെ നക്ഷത്രങ്ങൾക്കിടയിലൂടെ സഞ്ചരിക്കുന്നതായാണ് അനുഭവപ്പെടുന്നത്. ഭൂമി ഒരു വർഷംകൊണ്ട് സൂര്യനെ ചുറ്റി വിണ്ടും പഴയ സ്ഥാനത്ത് എത്തുമ്പോൾ, ഭൂമിയിൽ നിന്നു നോക്കുന്ന നാം കാണുന്നത് സൂര്യൻ ആകാശത്തിലെ നക്ഷത്രങ്ങൾക്കിയിലൂടെ വൃത്താകൃതിയിൽ സഞ്ചിരിച്ച് ഒരു വര്‍ഷം കൊണ്ട് വീണ്ടും പഴയ സ്ഥാനത്ത് എത്തുന്നതായാണ്. അതായത് സൂര്യൻ അതിന്റെ സമീപസ്ഥ നക്ഷത്രങ്ങളിൽനിന്നും പ്രതിദിനം അകന്നു പോകുന്നതായി തോന്നും.

ആകാശത്തിലെ നക്ഷത്രങ്ങൾക്കിടയിലൂടെ സൂര്യൻ സഞ്ചരിക്കുന്നതായി കാണപ്പെടുന്ന പാതയാണ് ക്രാന്തിവൃത്തം.

അങ്ങനെ ഒരു നക്ഷത്രത്തിൽ നിന്നും അകന്നു പോകുന്നതായി തോന്നുന്ന സൂര്യൻ, ആകാശഗോളത്തിലൂടെ വൃത്താകൃതിയിൽ സഞ്ചരിച്ച്, വീണ്ടും അതെ നക്ഷത്രത്തോടൊപ്പം എത്താൻ ഒരു വര്‍ഷമെടുക്കും. ഒരു വർഷം എന്നത് 360 ദിവസങ്ങളായാണ് പുരാതന മനുഷ്യൻ കണക്കാക്കിയിരുന്നത്. അതനുസരിച്ച് ഓരോ ദിവസവും സൂര്യൻ ആകെ വൃത്തത്തിന്റെ 360ൽ ഒരു ഭാഗം വീതം സഞ്ചരിക്കുമല്ലോ. ഇതു പ്രകാരം സൂര്യന്റെ ഒരു ദിവസത്തെ സഞ്ചാരത്തെ ഒരു ഡിഗ്രിയായും അങ്ങനെ ആകെ സഞ്ചരിക്കുന്ന വൃത്തത്തെ 360 ഡിഗ്രിയായും പൗരാണികർ കണക്കാക്കി എന്നതാണ് ആദ്യത്തെ വാദം.

വർഷത്തിന്റെ അളവ് 365¼ ദിവസം എന്നു പിന്നീട് കണ്ടെത്തിയെങ്കിലും വൃത്തത്തിന്റെ ഡിഗ്രി അളവ് 360 ആയി തുടര്‍ന്നു എന്ന് ജ്യാതിശാസ്ത്രവാദക്കാർ അഭിപ്രായപ്പെടുന്നു.

സമഭുജത്രികോണ വാദം

സമഭുജത്രികോണത്തിന്റെ കോണളവുമായി ബന്ധപ്പെട്ടതാണ് രണ്ടാമത്തെ വാദം. ഒരേ വലിപ്പമുള്ള മൂന്നു കമ്പുകൾ ചേര്‍ത്ത് ഒരു സമഭുജത്രികോണമുണ്ടാക്കിയാൽ അതിന്റെ കോണുകളെല്ലാം, ലോകത്തെവിടെയും തുല്യമായിരിക്കുമല്ലോ. ഓരോരുത്തരും എടുക്കുന്ന കമ്പുകളുടെ നീളങ്ങൾ എത്രതന്നെ വ്യത്യസ്തമായിരുന്നാലും ഉണ്ടാകുന്ന കോണുകൾക്ക് ഒരേ അളവായിരിക്കും.

വശങ്ങളെല്ലാം തുല്യമായിരിക്കുന്ന എല്ലാ ത്രികോണങ്ങളുടെയും കോണുകൾ ഒരേ അളവുള്ളവ ആയിരിക്കും

യാതൊരുവിധ അളവുപകരണങ്ങളുടെയും സഹായമില്ലാതെ ഏതൊരാൾക്കും ലോകത്തെവിടെയും ഒരേ അളവിൽ സൃഷ്ടിക്കാൻ കഴിയുന്ന ഒന്നാണ് സമഭുജ ത്രികോണത്തിന്റെ കോണ്. അതിനാൽ അതിനെ കോണുകളുടെ സാർവ്വത്രിക യൂണിറ്റായി കണക്കാക്കാം. ഇങ്ങനെയുണ്ടാകുന്ന കോണ് പക്ഷേ സാമാന്യം വലിയ ഒന്നാണ്. അതിനാൽ അന്നത്തെ സമ്പ്രദായമനുസരിച്ച് ഈ കോണിനെ 60 തുല്യഭാഗങ്ങളാക്കി വിഭജിച്ചു.

60 അടിസ്ഥാനമായ സംഖ്യാ സമ്പ്രദായം പുരാതനകാലത്ത് ഏറെ പ്രചാരത്തിലുണ്ടായിരുന്നതാണ്. മണിക്കൂറിനെയും മിനിറ്റിനെയുമൊക്കെ 60 ഭാഗങ്ങളായാണല്ലോ വിഭജിച്ചിട്ടുള്ളത്. 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 എന്നീ സംഖ്യകൾകൊണ്ടെല്ലാം ഹരിക്കാവുന്ന ഏറ്റവും ചെറിയ സംഖ്യയാണ് 60 എന്നതാണ് അതിന്റെ പ്രത്യേകത. പത്തിനോ നൂറിനോ അങ്ങനെ ഒരു പ്രത്യേകതയില്ല. നൂറിനെ മൂന്നായി വിഭജിക്കാൻ സാധിക്കില്ല. പ്രായോഗികമായ പല ഉപയോഗങ്ങള്‍ക്കും പത്തിനെയോ നൂറിനെയോക്കാൾ നല്ല സംഖ്യ 60 ആയിരുന്നു.

അങ്ങനെ സമഭുജ ത്രികോണത്തിന്റെ ഒരു കോണിന്റെ അളവ് 60 എന്ന് നിജപ്പെടുത്തി. അതിന്റെ 1/60 ഭാഗം കോണിന്റെ യൂണിറ്റ് അളവായി മാറി. ഈ യൂണിറ്റിനെ ഡിഗ്രി എന്നു വിളിച്ചു. ° എന്നതാണ് അതിന്റെ ചിഹ്നം.

ഒരു വൃത്തകേന്ദ്രത്തിൽ 6 സമഭുജ ത്രികോണങ്ങളെ ഉൾപ്പെടുത്താനാകും. മറ്റൊരു രീതിയിൽ പറഞ്ഞാൽ, ഒരു വൃത്തകേന്ദ്രത്തിൽ 60° വീതമുള്ള 6 കോണുകളുണ്ട്. അങ്ങനെ വൃത്തത്തിന്റെ ആകെ അളവ് 6 X 60° = 360° ആയി മാറി. ഇതാണ് സമഭുജത്രികോണ വാദം പറയുന്നത്. ഈ വാദത്തിനാണ് കൂടുതൽ സ്വീകാര്യതയും കിട്ടിടിട്ടുള്ളത്.

ഒരു വൃത്തകേന്ദ്രത്തിൽ 60° വീതമുള്ള 6 കോണുകൾ പൂർണ്ണമായും ഉൾക്കൊണ്ടിരിക്കുന്നു.

വൃത്തത്തിന്റെ അളവ് കണക്കാക്കാൻ നിലവിൽ നിരവധി രീതികളുണ്ടെങ്കിലും ഡിഗ്രി സമ്പ്രദായമാണ് പ്രായോഗികമായി ഏറെ സ്വീകരിക്കപ്പെട്ടിട്ടുള്ളത്. 360 പോലെ ഇത്രമാത്രം ഘടകക്രിയ ചെയ്യാനാകുന്ന മറ്റൊരു സംഖ്യ ഇല്ല എന്നതാണ് പ്രധാന കാര്യം. ജ്യോതിശാസ്ത്രത്തിൽ ഭൂമിയുടെയും ചന്ദ്രന്റെയും ചലനങ്ങളുമായി ബന്ധപ്പെട്ടുവരുന്ന മാസങ്ങൾ, പക്കങ്ങൾ എന്നിവയെല്ലാം 360ന്റെ ഘടകങ്ങളായി വരുന്നു എന്ന പ്രത്യേകതയുമുണ്ട്.

വൃത്തത്തിന്റെ അളവ് റേഡിയനിലും

ഒരു കോണിന്റെ ശീർഷം കേന്ദ്രമായി വരത്തക്കവിധത്തിൽ ഒരു വൃത്തം വരച്ചാൽ, ആ കോണിന്റെ ഭുജങ്ങൾ ഉൾക്കൊള്ളുന്ന വൃത്തഭാഗം പൂര്‍ണ്ണവൃത്തത്തിന്റെ ഒരു ചാപമായിരിക്കുമല്ലോ. ഈ ചാപം ആരത്തിന്റെ എത്ര മടങ്ങാണ് എന്ന് കണക്കാക്കിയും അതിന്റെ കേന്ദ്രകോണിനെ അളക്കാൻ സാധിക്കും. ഇങ്ങനെ കിട്ടുന്ന കോണിന്റെ അളവിന് റേഡിയൻ എന്നാണ് പറയുന്നത്.

കോൺ ഉൾക്കൊള്ളുന്ന ചാപത്തിന്റെ നീളം s, ആരം r എന്നിവയാണെങ്കിൽ കോണിന്റെ അളവ് s/r റേഡിയൻ ആയിരിക്കും. x റേഡിയൻ എന്ന അളവ് x rad എന്നാണെഴുതുന്നത്.

ഒരു പൂർണ്ണവൃത്തത്തിന്റെ ചുറ്റളവ് 2πr ആണല്ലോ. അപ്പോൾ ഒരു പൂർണ്ണവൃത്തത്തിന്റ റേഡിയൻ അളവ് 2πr ÷ r = 2π റേഡിയൻ ആണ്. അതുപോലെ അർദ്ധവൃത്തത്തിന്റെ കോണളവ് π റേഡിയനും കാൽ വൃത്തത്തിന്റെ റേഡിയൻ അളവ് π/2 റേഡിയനും ആയിരിക്കും.


5 പ്രതികരണങ്ങള്‍ “വൃത്തത്തിന്റെ കോണളവ് 360° ആയതിന്റെ കഥ”

  1. നന്നായിരിക്കുന്നു 👍🏽

    Like

      1. Sir,
        Can you please explain why?

        Like

    1.  അവതാർ
      അജ്ഞാതന്‍

      അഭിനന്ദനങ്ങൾ സർ🙏🙏🙏

      Like

  2.  അവതാർ
    അജ്ഞാതന്‍

    വളരെ നന്നായിരിക്കുന്നു

    Like

ഒരു മറുപടി കൊടുക്കുക

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  മാറ്റുക )

Facebook photo

You are commenting using your Facebook account. Log Out /  മാറ്റുക )

This site uses Akismet to reduce spam. Learn how your comment data is processed.

About Me

I am a writer, traveler, social worker, and psychologist. Interested in amateur photography, amateur astronomy, scientific temper etc. Actively participating in Wikipedia editing. I am a Government Employee by Profession. I am from Kollam District of Kerala, now residing at Thiruvananthapuram, working at Harbour Engineering Department, Kerala. Member of Kerala Sastra sahithya Parishad, Free Software Movement of India, DAKF, editorial board member of LUCA Science Portal.

Newsletter

%d bloggers like this: